Minimalist multiple target tracking using directional sensor beams

We consider the problem of determining the paths of multiple, unpredictable moving bodies in a cluttered environment using weak detection sensors that provide simple crossing information. Each sensor is a beam that, when broken, provides the direction of the crossing (one bit) and nothing else. Using a simple network of beams, the individual paths are separated and reconstructed as well as possible, up to combinatorial information about the route taken. In this setup, simple filtering algorithms are introduced, and a low-cost hardware implementation that demonstrates the practicality of the approach is shown. The results may apply in settings such as verification of multirobot system execution, surveillance and security, and unobtrusive behavioral monitoring for wildlife and the elderly.

[1]  Steven M. LaValle,et al.  Tracking hidden agents through shadow information spaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[2]  Upamanyu Madhow,et al.  Tracking Multiple Targets Using Binary Proximity Sensors , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[3]  Michael Segal,et al.  Improved approximation algorithms for connected sensor cover , 2004, ADHOC-NOW.

[4]  S. Shankar Sastry,et al.  Tracking and Coordination of Multiple Agents Using Sensor Networks: System Design, Algorithms and Experiments , 2007, Proceedings of the IEEE.

[5]  Kamin Whitehouse,et al.  The smart thermostat: using occupancy sensors to save energy in homes , 2010, SenSys '10.

[6]  Leonidas J. Guibas,et al.  Wireless sensor networks - an information processing approach , 2004, The Morgan Kaufmann series in networking.

[7]  Y. Bar-Shalom Tracking and data association , 1988 .

[8]  Steven M. LaValle,et al.  Manipulating Ergodic Bodies through Gentle Guidance , 2012 .

[9]  Yu Hen Hu,et al.  Detection, classification, and tracking of targets , 2002, IEEE Signal Process. Mag..

[10]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[11]  Steven M. LaValle,et al.  Story validation and approximate path inference with a sparse network of heterogeneous sensors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  Lui Sha,et al.  I-Living: An Open System Architecture for Assisted Living , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[13]  S. Shankar Sastry,et al.  Tracking on a graph , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[14]  Jeung-Yoon Choi,et al.  On target tracking with binary proximity sensors , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[15]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[16]  Dan Gusfield Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[17]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[18]  Fred Cohen,et al.  Sensor Beams, Obstacles, and Possible Paths , 2008, WAFR.

[19]  Akbar M. Sayeed,et al.  Detection, Classification and Tracking of Targets in Distributed Sensor Networks , 2002 .

[20]  Steven M. LaValle,et al.  Controlling wild mobile robots using virtual gates and discrete transitions , 2012, 2012 American Control Conference (ACC).

[21]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[22]  Cyril Allauzen,et al.  Linear-Space Computation of the Edit-Distance between a String and a Finite Automaton , 2009, ArXiv.

[23]  Nisheeth Shrivastava,et al.  Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms , 2006, SenSys '06.

[24]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[25]  Zack J. Butler,et al.  Tracking a moving object with a binary sensor network , 2003, SenSys '03.

[26]  Steven M. LaValle,et al.  Cyber Detectives: Determining When Robots or People Misbehave , 2010, WAFR.

[27]  Leonardo Bobadilla,et al.  Controlling Wild Bodies Using Discrete Transition Systems , 2011 .

[28]  Steven M. LaValle,et al.  Controlling Wild Bodies Using Linear Temporal Logic , 2011, Robotics: Science and Systems.

[29]  Robert A. Wagner,et al.  Order-n correction for regular languages , 1974, CACM.

[30]  SegalMichael,et al.  Improved approximation algorithms for connected sensor cover , 2007 .