Dynamical MEG source modeling with multi‐target Bayesian filtering

We present a Bayesian filtering approach for automatic estimation of dynamical source models from magnetoencephalographic data. We apply multi‐target Bayesian filtering and the theory of Random Finite Sets in an algorithm that recovers the life times, locations and strengths of a set of dipolar sources. The reconstructed dipoles are clustered in time and space to associate them with sources. We applied this new method to synthetic data sets and show here that it is able to automatically estimate the source structure in most cases more accurately than either traditional multi‐dipole modeling or minimum current estimation performed by uninformed human operators. We also show that from real somatosensory evoked fields the method reconstructs a source constellation comparable to that obtained by multi‐dipole modeling. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.

[1]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[2]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[3]  Riitta Hari,et al.  Comparison of Minimum Current Estimate and Dipole Modeling in the Analysis of Simulated Activity in the Human Visual Cortices , 2002, NeuroImage.

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[6]  Lauri Parkkonen,et al.  Particle filters: a new method for reconstructing multiple current dipoles from meg data , 2007 .

[7]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[8]  G. Matheron Random Sets and Integral Geometry , 1976 .

[9]  Sam Weerahandi,et al.  Exact Statistical Methods for Data Analysis , 1998, Journal of the American Statistical Association.

[10]  Tohru Ozaki,et al.  A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering , 2004, NeuroImage.

[11]  E.N. Brown,et al.  Large Scale Kalman Filtering Solutions to the Electrophysiological Source Localization Problem- A MEG Case Study , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[12]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[13]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[14]  C. Aine,et al.  Multistart Algorithms for MEG Empirical Data Analysis Reliably Characterize Locations and Time Courses of Multiple Sources , 2000, NeuroImage.

[15]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[16]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  I. Molchanov Theory of Random Sets , 2005 .

[18]  Sergey M. Plis,et al.  Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data , 2005, NeuroImage.

[19]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[20]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[21]  E. Somersalo,et al.  Non-stationary magnetoencephalography by Bayesian filtering of dipole models , 2003 .

[22]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[23]  C. Campi,et al.  A Rao–Blackwellized particle filter for magnetoencephalography , 2008 .

[24]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997 .

[25]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[26]  R. Salmelin,et al.  Global optimization in the localization of neuromagnetic sources , 1998, IEEE Transactions on Biomedical Engineering.

[27]  David Poeppel,et al.  Application of an MEG eigenspace beamformer to reconstructing spatio‐temporal activities of neural sources , 2002, Human brain mapping.

[28]  Robert F. Ling,et al.  Cluster analysis algorithms for data reduction and classification of objects , 1981 .