Dynamical MEG source modeling with multi‐target Bayesian filtering
暂无分享,去创建一个
Lauri Parkkonen | Michele Piana | Annalisa Pascarella | Alberto Sorrentino | Cristina Campi | L. Parkkonen | C. Campi | M. Piana | A. Pascarella | A. Sorrentino
[1] S. Taulu,et al. Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.
[2] Polina Golland,et al. A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.
[3] Riitta Hari,et al. Comparison of Minimum Current Estimate and Dipole Modeling in the Analysis of Simulated Activity in the Human Visual Cortices , 2002, NeuroImage.
[4] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[5] R. Ilmoniemi,et al. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .
[6] Lauri Parkkonen,et al. Particle filters: a new method for reconstructing multiple current dipoles from meg data , 2007 .
[7] R. Mahler. Multitarget Bayes filtering via first-order multitarget moments , 2003 .
[8] G. Matheron. Random Sets and Integral Geometry , 1976 .
[9] Sam Weerahandi,et al. Exact Statistical Methods for Data Analysis , 1998, Journal of the American Statistical Association.
[10] Tohru Ozaki,et al. A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering , 2004, NeuroImage.
[11] E.N. Brown,et al. Large Scale Kalman Filtering Solutions to the Electrophysiological Source Localization Problem- A MEG Case Study , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.
[12] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[13] A. Doucet,et al. Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.
[14] C. Aine,et al. Multistart Algorithms for MEG Empirical Data Analysis Reliably Characterize Locations and Time Courses of Multiple Sources , 2000, NeuroImage.
[15] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[16] R. Hari,et al. Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[17] I. Molchanov. Theory of Random Sets , 2005 .
[18] Sergey M. Plis,et al. Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data , 2005, NeuroImage.
[19] W. Drongelen,et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.
[20] R. Ilmoniemi,et al. Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.
[21] E. Somersalo,et al. Non-stationary magnetoencephalography by Bayesian filtering of dipole models , 2003 .
[22] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[23] C. Campi,et al. A Rao–Blackwellized particle filter for magnetoencephalography , 2008 .
[24] Richard M. Leahy,et al. Source localization using recursively applied and projected (RAP) MUSIC , 1997 .
[25] E. Somersalo,et al. Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.
[26] R. Salmelin,et al. Global optimization in the localization of neuromagnetic sources , 1998, IEEE Transactions on Biomedical Engineering.
[27] David Poeppel,et al. Application of an MEG eigenspace beamformer to reconstructing spatio‐temporal activities of neural sources , 2002, Human brain mapping.
[28] Robert F. Ling,et al. Cluster analysis algorithms for data reduction and classification of objects , 1981 .