Sensing Phase Aberrations behind Lyot Coronagraphs

Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

[1]  J. Angel,et al.  Ground-based imaging of extrasolar planets using adaptive optics , 1994, Nature.

[2]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[3]  Massimo Stiavelli,et al.  Performance of HST as an infrared telescope , 2000, Astronomical Telescopes + Instrumentation.

[4]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[5]  Eric E. Bloemhof,et al.  Behavior of Remnant Speckles in an Adaptively Corrected Imaging System , 2001 .

[6]  A. Sivaramakrishnan,et al.  Ground-based Coronagraphy with High-order Adaptive Optics , 2000, Astronomical Telescopes and Instrumentation.

[7]  Bruce A. Macintosh,et al.  Speckle Decorrelation and Dynamic Range in Speckle Noise-limited Imaging , 2002 .

[8]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[9]  C. Aime,et al.  Total coronagraphic extinction of rectangular apertures using linear prolate apodizations , 2002 .

[10]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[11]  C. Aime,et al.  Stellar coronagraphy with prolate apodized circular apertures , 2003 .

[12]  Michael Shao,et al.  Visible nulling interferometer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  Claude Aime,et al.  The Usefulness and Limits of Coronagraphy in the Presence of Pinned Speckles , 2004 .

[14]  Michael Shao,et al.  Science camera calibration for extreme adaptive optics , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  Russell B. Makidon,et al.  The Lyot project: toward exoplanet imaging and spectroscopy , 2004, SPIE Astronomical Telescopes + Instrumentation.

[16]  Anand Sivaramakrishnan,et al.  The thermal background of HST as measured by HST-NICMOS , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  Bruce A. Macintosh,et al.  eXtreme Adaptive Optics Planet Imager: overview and status , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  B. Macintosh,et al.  Spatially filtered wave-front sensor for high-order adaptive optics. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  C. Marois,et al.  Differential Imaging with a Multicolor Detector Assembly: A New Exoplanet Finder Concept , 2004, astro-ph/0410010.

[20]  Stuart B. Shaklan,et al.  Low-Order Aberration Sensitivity of Eighth-Order Coronagraph Masks , 2005 .

[21]  James P. Lloyd,et al.  Spiders in Lyot Coronagraphs , 2005, astro-ph/0506564.

[22]  J. Davy Kirkpatrick,et al.  New spectral types L and T , 2005 .

[23]  James P. Lloyd,et al.  Tip-Tilt Error in Lyot Coronagraphs , 2005 .

[24]  R. Soummer Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures , 2004, astro-ph/0412221.

[25]  Jean-Pierre Véran,et al.  Optimal modal fourier-transform wavefront control. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  M. D. Perrin,et al.  An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images , 2005 .

[27]  C. Marois,et al.  TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions , 2005 .

[28]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[29]  Russell B. Makidon,et al.  Low-Order Aberrations in Band-limited Lyot Coronagraphs , 2005, astro-ph/0507539.

[30]  T. Fusco,et al.  Design of the extreme AO system for SPHERE, the planet finder instrument of the VLT , 2006, SPIE Astronomical Telescopes + Instrumentation.

[31]  J. P. Laboratory,et al.  High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.

[32]  Lisa Poyneer,et al.  The Gemini Planet Imager , 2006, SPIE Astronomical Telescopes + Instrumentation.

[33]  Rocco Samuele,et al.  A laboratory experiment for demonstrating post-coronagraph wavefront sensing and control for extreme adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[34]  R. Vanderbei,et al.  On representing and correcting wavefront errors in high-contrast imaging systems. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Russell B. Makidon,et al.  The Challenges of Coronagraphic Astrometry , 2006 .

[37]  Jean-Pierre Véran,et al.  Wavefront control for the Gemini Planet Imager , 2006, SPIE Astronomical Telescopes + Instrumentation.

[38]  Christof Iserlohe,et al.  First High-Contrast Science with an Integral Field Spectrograph: The Substellar Companion to GQ Lupi , 2006 .

[39]  R'emi Soummer,et al.  The Strehl Ratio in Adaptive Optics Images: Statistics and Estimation , 2007, 0706.1718.

[40]  Thierry Fusco,et al.  Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[41]  R. Vanderbei,et al.  Fast computation of Lyot-style coronagraph propagation. , 2007, Optics express.

[42]  W. Traub,et al.  A laboratory demonstration of the capability to image an Earth-like extrasolar planet , 2007, Nature.

[43]  James R. Graham,et al.  Discovery of an Extended Debris Disk around the F2 V Star HD 15745 , 2007, 0712.0378.

[44]  Russell B. Makidon,et al.  Temporal Evolution of Coronagraphic Dynamic Range and Constraints on Companions to Vega , 2006, astro-ph/0609337.

[45]  C. Aime,et al.  Speckle Noise and Dynamic Range in Coronagraphic Images , 2007, 0706.1739.

[46]  David Lafreniere,et al.  Improving the Speckle Noise Attenuation of Simultaneous Spectral Differential Imaging with a Focal Plane Holographic Diffuser , 2007 .

[47]  Brian J. Bauman,et al.  Adaptive Optics for Direct Detection of Extrasolar Planets: The Gemini Planet Imager , 2007 .

[48]  N. Jeremy Kasdin,et al.  Polychromatic compensation of propagated aberrations for high-contrast imaging , 2007 .

[49]  Michael Shao Calibration of residual speckle in a nulling coronagraph , 2007 .

[50]  Boeing,et al.  The Solar-System-Scale Disk around AB Aurigae , 2008, 0803.3629.