Efficient single-step preconditioned HSS iteration methods for complex symmetric linear systems

Abstract We propose a single-step preconditioned variant of HSS (SPHSS) and an efficient parameterized SPHSS (PSPHSS) iteration method for solving a class of complex symmetric linear systems. Under suitable conditions, we analyze the convergence properties of the SPHSS and PSPHSS iteration methods. Theoretical analysis shows that the minimal upper bounds for the spectral radius of the SPHSS and PSPHSS iteration matrices are less than those of the SHSS and PSHSS iteration matrices when using the optimal parameters, respectively. Numerical results show that the PSPHSS iteration method has comparable advantage over several other iteration methods whether the experimental optimal parameters are used or not.

[1]  Quan Shi,et al.  Generalized shift-splitting preconditioners for nonsingular and singular generalized saddle point problems , 2016, Comput. Math. Appl..

[2]  Michele Benzi,et al.  A Generalization of the Hermitian and Skew-Hermitian Splitting Iteration , 2009, SIAM J. Matrix Anal. Appl..

[3]  D. K. Salkuyeh,et al.  Generalized SOR iterative method for a class of complex symmetric linear system of equations , 2014, 1403.5902.

[4]  Z. Bai ON HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS * , 2010 .

[5]  Michael K. Ng,et al.  Preconditioners for nonsymmetric block toeplitz-like-plus-diagonal linear systems , 2003, Numerische Mathematik.

[6]  Xu Li,et al.  Lopsided PMHSS iteration method for a class of complex symmetric linear systems , 2013, Numerical Algorithms.

[7]  Lin Dai,et al.  On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AXB=C , 2013, Comput. Math. Appl..

[8]  Yujiang Wu,et al.  A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems , 2017 .

[9]  Qingqing Zheng,et al.  Accelerated PMHSS iteration methods for complex symmetric linear systems , 2016, Numerical Algorithms.

[10]  Min-Li Zeng,et al.  A parameterized SHSS iteration method for a class of complex symmetric system of linear equations , 2016, Comput. Math. Appl..

[11]  O. Axelsson,et al.  Real valued iterative methods for solving complex symmetric linear systems , 2000 .

[12]  Yang Cao,et al.  Shift-splitting preconditioners for saddle point problems , 2014, J. Comput. Appl. Math..

[13]  Rong Zhou,et al.  A generalization of the Hermitian and skew-Hermitian splitting iteration method for solving Sylvester equations , 2015, Appl. Math. Comput..

[14]  Xiang Wang,et al.  On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation AX-XB=C , 2013, Comput. Math. Appl..

[15]  V. Simoncini,et al.  Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .

[16]  Gene H. Golub,et al.  On successive‐overrelaxation acceleration of the Hermitian and skew‐Hermitian splitting iterations , 2007, Numer. Linear Algebra Appl..

[17]  Zhong-Zhi Bai,et al.  A class of two‐stage iterative methods for systems of weakly nonlinear equations , 1997, Numerical Algorithms.

[18]  Davod Khojasteh Salkuyeh,et al.  Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations , 2015, Int. J. Comput. Math..

[19]  Hossein Sadeghi Goughery,et al.  New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems , 2015, Numerical Algorithms.

[20]  Zhong-Zhi Bai,et al.  On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.

[21]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[22]  Fang Chen,et al.  On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.

[23]  Zhou Rong,et al.  A MODIFIED HSS ITERATION METHOD FOR SOLVING THE COMPLEX LINEAR MATRIX EQUATION AXB = C , 2016 .

[24]  Zhong-Zhi Bai,et al.  Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations , 2006, Numer. Linear Algebra Appl..

[25]  Davod Khojasteh Salkuyeh,et al.  Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations , 2014, Numer. Linear Algebra Appl..

[26]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[27]  Xiang Wang,et al.  Preconditioned Positive-Definite and Skew-Hermitian Splitting Iteration Methods for Continuous Sylvester Equations AX + XB = C , 2017 .

[28]  Hongwei Yin,et al.  Efficient parameterized HSS iteration methods for complex symmetric linear systems , 2017, Comput. Math. Appl..

[29]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[30]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[31]  Z. Bai,et al.  Rotated block triangular preconditioning based on PMHSS , 2013 .

[32]  Zhong-zhi,et al.  A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .

[33]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[34]  Qingqing Zheng,et al.  A shift-splitting preconditioner for a class of block two-by-two linear systems , 2017, Appl. Math. Lett..

[35]  Z. Bai Several splittings for non-Hermitian linear systems , 2008 .

[36]  M. Benzi,et al.  Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems , 2013 .

[37]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[38]  Zhong-zhi,et al.  ON NEWTON-HSS METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS WITH POSITIVE-DEFINITE JACOBIAN MATRICES , 2010 .

[39]  M. Benzi,et al.  Block preconditioning of real-valued iterative algorithms for complex linear systems , 2007 .

[40]  Michael K. Ng,et al.  On Preconditioned Iterative Methods for Burgers Equations , 2007, SIAM J. Sci. Comput..

[41]  Xiang Wang,et al.  A modified GPSS method for non-Hermitian positive definite linear systems , 2014, Appl. Math. Comput..

[42]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[43]  Cui-Xia Li,et al.  A single-step HSS method for non-Hermitian positive definite linear systems , 2015, Appl. Math. Lett..

[44]  M. Ng,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[45]  Changfeng Ma,et al.  AOR-Uzawa iterative method for a class of complex symmetric linear system of equations , 2016, Comput. Math. Appl..