Geometric Sample Reweighting for Monte Carlo Integration

We present a general sample reweighting scheme and its underlying theory for the integration of an unknown function with low dimensionality. Our method produces better results than standard weighting schemes for common sampling strategies, while avoiding bias. Our main insight is to link the weight derivation to the function reconstruction process during integration. The implementation of our solution is simple and results in an improved convergence behavior. We illustrate its benefit by applying our method to multiple Monte Carlo rendering problems.

[1]  Jeffrey Scott Vitter,et al.  Random sampling with a reservoir , 1985, TOMS.

[2]  Herbert A. David,et al.  Order Statistics, Third Edition , 2003, Wiley Series in Probability and Statistics.

[3]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[4]  S. Yakowitz,et al.  Weighted Monte Carlo Integration , 1978 .

[5]  Jerry Jinfeng Guo,et al.  Primary Sample Space Path Guiding , 2018, EGSR.

[6]  Christian Bouville,et al.  Optimal Sample Weights for Hemispherical Integral Quadratures , 2019, Comput. Graph. Forum.

[7]  Philippe Bekaert,et al.  Advanced Global Illumination, Second Edition , 2006 .

[8]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[9]  Serge J. Belongie,et al.  Structured importance sampling of environment maps , 2003, ACM Trans. Graph..

[10]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[11]  Mark S. Drew,et al.  A tool to create illuminant and reflectance spectra for light-driven graphics and visualization , 2009, ACM Trans. Graph..

[12]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[13]  Marc J. van Kreveld,et al.  Computational Geometry , 1997, Springer Berlin Heidelberg.

[14]  Carsten Dachsbacher,et al.  Re‐Weighting Firefly Samples for Improved Finite‐Sample Monte Carlo Estimates , 2018 .

[15]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[16]  Don P. Mitchell,et al.  The Antialiasing Problem in Ray Tracing , 2000 .

[17]  Peter Shirley,et al.  Physically based lighting calculations for computer graphics , 1991 .

[18]  Jaakko Lehtinen,et al.  Temporal light field reconstruction for rendering distribution effects Citation , 2011 .

[19]  Frédo Durand,et al.  Frequency analysis and sheared reconstruction for rendering motion blur , 2009, SIGGRAPH 2009.

[20]  Paul Debevec Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 2008, SIGGRAPH Classes.

[21]  Aaron E. Lefohn,et al.  Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting , 2020, ACM Trans. Graph..

[22]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[23]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[24]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[25]  Johannes Hanika,et al.  Hero Wavelength Spectral Sampling , 2014, Comput. Graph. Forum.

[26]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[27]  Frédo Durand,et al.  Frequency analysis and sheared filtering for shadow light fields of complex occluders , 2011, TOGS.

[28]  Parris K. Egbert,et al.  Importance resampling for global illumination , 2005, EGSR '05.

[29]  D. Munson A note on Lena , 1996 .

[30]  Frédo Durand,et al.  Fourier depth of field , 2009, TOGS.

[31]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[32]  Carsten Dachsbacher,et al.  Re‐Weighting Firefly Samples for Improved Finite‐Sample Monte Carlo Estimates , 2018, Comput. Graph. Forum.

[33]  Richard Peter Weistroffer,et al.  Multidimensional adaptive sampling and reconstruction for ray tracing , 2008, SIGGRAPH 2008.