Submillimetre polarization and magnetic field properties in the envelopes of protoplanetary nebulae CRL 618 and OH 231.8+4.2

We have carried out continuum and line polarisation observations of two Proto-planetary nebulae (PPNe), CRL 618 and OH 231.8+4.2, using the Submillimeter Array (SMA) in its compact configuration. The frequency range of observations, 330-345 GHz, includes the CO(J=3-2) line emission. CRL 618 and OH 231.8+4.2 show quadrupolar and bipolar optical lobes, respectively, surrounded by a dusty envelope reminiscent of their AGB phase. We report a detection of dust continuum polarised emission in both PPNe above 4 sigma but no molecular line polarisation detection above a 3 sigma limit. OH 231.8+4.2 is slightly more polarised on average than CRL 618 with a mean fractional polarisation of 4.3 and 0.3 per cent, respectively. This agrees with the previous finding that silicate dust shows higher polarisation than carbonaceous dust. In both objects, an anti-correlation between the fractional polarisation and the intensity is observed. Neither PPNe show a well defined toroidal equatorial field, rather the field is generally well aligned and organised along the polar direction. This is clearly seen in CRL 618 while in the case of OH 231.8+4.2, the geometry indicates an X-shaped structure coinciding overall with a dipole/polar configuration. However in the later case, the presence of a fragmented and weak toroidal field should not be discarded. Finally, in both PPNe, we observed that the well organised magnetic field is parallel with the major axis of the 12CO outflow. This alignment could indicate the presence of a magnetic outflow launching mechanism. Based on our new high resolution data we propose two scenarios to explain the evolution of the magnetic field in evolved stars.

[1]  B. Balick,et al.  OUTFLOWS FROM EVOLVED STARS: THE RAPIDLY CHANGING FINGERS OF CRL 618 , 2013, 1305.5304.

[2]  R. Sahai,et al.  MAPPING THE CENTRAL REGION OF THE PPN CRL 618 AT SUBARCSECOND RESOLUTION AT 350 GHz , 2013, 1305.1731.

[3]  P. Hennebelle,et al.  Adaptable radiative transfer innovations for submillimetre telescopes (ARTIST) - Dust polarisation module (DustPol) , 2012, 1204.6668.

[4]  N. Patel,et al.  MAPPING THE LINEARLY POLARIZED SPECTRAL LINE EMISSION AROUND THE EVOLVED STAR IRC+10216 , 2012, 1204.4381.

[5]  H. Chen,et al.  THE MAGNETIZED ENVIRONMENT OF THE W3(H2O) PROTOSTARS , 2012, 1204.3849.

[6]  R. Rao,et al.  Polarization of thermal molecular lines in the envelope of IK Tauri , 2012, 1203.2922.

[7]  P. Koch,et al.  MAGNETIC FIELD STRENGTH MAPS FOR MOLECULAR CLOUDS: A NEW METHOD BASED ON A POLARIZATION–INTENSITY GRADIENT RELATION , 2012, 1201.4263.

[8]  A. Kemball,et al.  Rotten Egg nebula: the magnetic field of a binary evolved star , 2012, 1201.3839.

[9]  V. Bujarrabal,et al.  Herschel/HIFI observations of molecular emission in protoplanetary nebulae and young planetary nebulae , 2011, 1109.6145.

[10]  K. Menten,et al.  Herschel/HIFI observations of high-J CO transitions in the protoplanetary nebula CRL 618 , 2010, 1007.1570.

[11]  Daniel P. Marrone,et al.  The submillimeter array polarimeter , 2008, Astronomical Telescopes + Instrumentation.

[12]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[13]  M. Morris,et al.  Preplanetary Nebulae: A Hubble Space Telescope Imaging Survey and a New Morphological Classification System , 2007, 0707.4662.

[14]  Sun Kwok,et al.  Submillimeter Array Observation of the Proto-Planetary Nebula CRL 618 in the CO J = 6-5 Line , 2007, 0707.4035.

[15]  A. Zijlstra,et al.  Magnetic fields in planetary nebulae and post-AGB nebulae , 2007, astro-ph/0701054.

[16]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005, astro-ph/0505571.

[17]  A. Zijlstra,et al.  Molecules in bipolar proto-planetary nebulae , 2004, astro-ph/0407390.

[18]  A. Sargent,et al.  1'' Resolution Mapping of the Molecular Envelope of the Protoplanetary Nebula CRL 618 , 2004 .

[19]  R. Sahai,et al.  The Companion to the Central Mira Star of the Protoplanetary Nebula OH 231.8+4.2 , 2004 .

[20]  M. Egan,et al.  The phase of H2O ice and the librational band in OH231.8+4.2: new interpretations , 2004 .

[21]  R. Sahai,et al.  Physical Structure of the Protoplanetary Nebula CRL 618. II. Interferometric Mapping of Millimeter-Wavelength HCN J = 1-0, HCO+ J = 1-0, and Continuum Emission , 2004 .

[22]  J. Greaves Toroidal magnetic fields around planetary nebulae , 2002 .

[23]  R. Sahai,et al.  HST observations of the protoplanetary nebula OH 231.8+4.2: The structure of the jets and shocks , 2002 .

[24]  R. Sahai,et al.  Physical Structure of the Proto-Planetary Nebula CRL 618. I. Optical Long-Slit Spectroscopy and Imaging , 2002, astro-ph/0206200.

[25]  B. Matthews,et al.  Magnetic Fields in Star-forming Molecular Clouds. III. Submillimeter Polarimetry of Intermediate-Mass Cores and Filaments in Orion B , 2002, astro-ph/0201347.

[26]  Adam Frank,et al.  Magnetic Collimation in Planetary Nebulae , 2001 .

[27]  R. Neri,et al.  The highly collimated bipolar outflow of OH 231.8+4.2 ? , 2001 .

[28]  B. Matthews,et al.  Magnetic Fields in Star-forming Molecular Clouds. II. The Depolarization Effect in the OMC-3 Filament of Orion A , 2001, astro-ph/0106394.

[29]  J. A. Markiel,et al.  Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae , 2001, Nature.

[30]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[31]  B. Balick,et al.  Disk Formation by Asymptotic Giant Branch Winds in Dipole Magnetic Fields , 2000, astro-ph/0008129.

[32]  B. Draine,et al.  Resonance Paramagnetic Relaxation and Alignment of Small Grains , 2000, The Astrophysical journal.

[33]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[34]  Philip C. Myers,et al.  On the Efficiency of Grain Alignment in Dark Clouds , 1997, astro-ph/9706163.

[35]  D. Whittet,et al.  Polarimetry of the interstellar medium , 1996 .

[36]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Polarization: Spheroids , 1995 .

[37]  P. Martin,et al.  The Size distribution of interstellar dust particles as determined from polarization: Infinite cylinders , 1994 .

[38]  R. Gaume,et al.  The 150 AU structure of the radio continuum and the ammonia bipolar outflow in CRL 618 , 1993 .

[39]  S. Kwok Proto-Planetary Nebulae , 1993 .

[40]  M. Wright,et al.  Mapping Cygnus A at 3 millimeter wavelength with the MIRIAD system , 1993 .

[41]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[42]  I. Gatley,et al.  Variation in the near-infrared surface brightness distribution of the bipolar nebula OH 231.8 + 4.2 , 1992 .

[43]  R. Goodrich Proto--Planetary Nebulae. II. The Shock-heated Bipolar Nebulae GL 618 and M2-56 , 1991 .

[44]  A. Omont,et al.  The Rich Molecular Spectrum and the Rapid Outflow of OH 231.8+4.2 , 1987 .

[45]  J. Mathis The alignment of interstellar grains , 1986 .

[46]  Giles A Novak,et al.  Detection of submillimeter polarization in the Orion nebula , 1984 .

[47]  S. Kwok,et al.  Radio structure of the proto-planetary nebula GL 618. , 1984 .

[48]  N. Kylafis,et al.  Linear polarization of radio frequency lines in molecular clouds and circumstellar envelopes , 1982 .

[49]  N. Kylafis,et al.  On mapping the magnetic field direction in molecular clouds by polarization measurements , 1981 .

[50]  L. Spitzer,et al.  Magnetic Alignment of Interstellar Grains , 1967 .

[51]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .