Acoustofluidics 22: multi-wavelength resonators, applications and considerations.

One important niche for multi-wavelength resonators is the filtration of suspensions containing very high particle concentration. For some applications, multi-wavelength ultrasound enhanced sedimentation filters are second only to the centrifuge in efficiency but, unlike the centrifuge they are easily adapted for continuous flow. Multi-wavelength resonators are also an obvious consideration when half-wavelength chambers are too small for a specific application. Unfortunately the formula, bigger = higher-throughput, does not scale linearly. Here we describe the relationships between chamber size and throughput for acoustic, electrical, flow and thermal convection actions, allowing the user to define initial parameters for their specific applications with some confidence. We start with a review of some of the many forms of multi-wavelength particle manipulation systems.

[1]  J. Smith,et al.  Low Reynolds number developing flows , 1969 .

[2]  Martyn Hill,et al.  Modelling for the robust design of layered resonators for ultrasonic particle manipulation. , 2008, Ultrasonics.

[3]  A Lenshof,et al.  Acoustofluidics 5: Building microfluidic acoustic resonators. , 2012, Lab on a chip.

[4]  Martin Gröschl,et al.  Single half-wavelength ultrasonic particle filter: predictions of the transfer matrix multilayer resonator model and experimental filtration results. , 2002, The Journal of the Acoustical Society of America.

[5]  Yoichiro Matsumoto,et al.  On the pressure of cavitation bubbles , 2008 .

[6]  Dipen N. Sinha,et al.  Novel cylindrical, air-coupled acoustic levitation/concentration devices , 2002 .

[7]  E. Rietman,et al.  Separation of micron-sized particles in macro-scale cavities by ultrasonic standing waves , 2010 .

[8]  J. Hawkes,et al.  Filtration of bacteria and yeast by ultrasound‐enhanced sedimentation , 1997, Journal of applied microbiology.

[9]  Jeremy J. Hawkes,et al.  A laminar flow expansion chamber facilitating downstream manipulation of particles concentrated using an ultrasonic standing wave , 1998 .

[10]  Theodore C Marentis,et al.  Ultrasonic mixing in microfluidic channels using integrated transducers. , 2004, Analytical chemistry.

[11]  Dirk Möller,et al.  Acoustofluidics 4: Piezoelectricity and application in the excitation of acoustic fields for ultrasonic particle manipulation. , 2012, Lab on a chip.

[12]  Thomas Schwarz,et al.  Acoustofluidics 6: Experimental characterization of ultrasonic particle manipulation devices. , 2012, Lab on a chip.

[13]  Luciano Castillo,et al.  Separation criterion for turbulent boundary layers via similarity analysis , 2004 .

[14]  Jeremy J. Hawkes,et al.  Ultrasonic manipulation of particles in microgravity , 1998 .

[15]  Thomas Schwarz,et al.  Acoustofluidics 3: Continuum mechanics for ultrasonic particle manipulation. , 2012, Lab on a chip.

[16]  Henrik Bruus,et al.  Acoustofluidics 2: perturbation theory and ultrasound resonance modes. , 2012, Lab on a chip.

[17]  Thomas Laurell,et al.  Measuring the local pressure amplitude in microchannel acoustophoresis. , 2010, Lab on a chip.

[18]  W. Coakley,et al.  Transport and harvesting of suspended particles using modulated ultrasound. , 1991, Ultrasonics.

[19]  T. Mason,et al.  Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing , 2002 .

[20]  Peter Cawley,et al.  The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints , 1994 .

[21]  Martin Wiklund,et al.  Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. , 2012, Lab on a chip.

[22]  E. Benes,et al.  A study of the spatial organisation of microbial cells in a gel matrix subjected to treatment with ultrasound standing waves , 2001, Bioseparation.

[23]  P J Keay,et al.  Plasma preparation from whole blood using ultrasound. , 2000, Ultrasound in medicine & biology.

[24]  Martin Wiklund,et al.  Acoustofluidics 12: Biocompatibility and Cell Viability in Microfluidic Acoustic Resonators I Introduction Lab on a Chip , 2022 .

[25]  Michel Castaings,et al.  Finite element model for waves guided along solid systems of arbitrary section coupled to infinite solid media. , 2008, The Journal of the Acoustical Society of America.

[26]  Martin Greenspan,et al.  Tables of the Speed of Sound in Water , 1959 .

[27]  D. Sinha,et al.  Acoustic concentration of particles in piezoelectric tubes: Theoretical modeling of the effect of cavity shape and symmetry breaking , 2004 .

[28]  T. W. Schneider,et al.  Influence of compressional wave generation on thickness-shear mode resonator response in a fluid , 1995 .

[29]  Robert W Barber,et al.  Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. , 2004, Lab on a chip.

[30]  Donald L Feke,et al.  Retention and Viability Characteristics of Mammalian Cells in an Acoustically Driven Polymer Mesh , 2004, Biotechnology progress.

[31]  S. Fukusako,et al.  Free convective heat transfer with density inversion in a confined rectangular vessel , 1978 .

[32]  Henrik Bruus,et al.  Acoustofluidics 10: scaling laws in acoustophoresis. , 2012, Lab on a chip.

[33]  Hill,et al.  Modelling in the design of a flow-through ultrasonic separator , 2000, Ultrasonics.

[34]  S. Radel Influence of biomass, throughput and true electric power input on the separation efficiency of a 60 mL acoustic filter , 2009, Elektrotech. Informationstechnik.

[35]  Donald L. Feke,et al.  Filtration of particulate suspensions in acoustically driven porous media , 1998 .

[36]  H. Tom Soh,et al.  High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping , 2012 .

[37]  Thomas Laurell,et al.  Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. , 2011, Lab on a chip.

[38]  E. A. Foumeny,et al.  The influence of reynolds number on the entry length and pressure drop for laminar pipe flow , 1993 .

[39]  Ewald Benes,et al.  General one‐dimensional treatment of the layered piezoelectric resonator with two electrodes , 1987 .

[40]  Martyn Hill,et al.  Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation. , 2012, Lab on a chip.

[41]  E. Benes,et al.  A General-Purpose Online Measurement System for Resonant BAW Sensors , 2006, IEEE Sensors Journal.

[42]  Thomas Laurell,et al.  Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis. , 2012, Lab on a chip.

[43]  Kenji Uchino Piezoelectric ultrasonic motors: overview , 1998 .

[44]  J. Hawkes,et al.  A continuous flow ultrasonic cell-filtering method , 1996 .

[45]  Martyn Hill,et al.  Modelling of layered resonators for ultrasonic separation. , 2002, Ultrasonics.

[46]  Henrik Bruus,et al.  Acoustofluidics 1: Governing equations in microfluidics. , 2011, Lab on a chip.

[47]  Jeremy J. Hawkes,et al.  Force field particle filter, combining ultrasound standing waves and laminar flow , 2001 .

[48]  E. Sparrow,et al.  Flow separation in a diverging conical duct: Effect of Reynolds number and divergence angle , 2009 .

[49]  E. Benes,et al.  Development of a novel compact sonicator for cell disruption. , 2005, Journal of microbiological methods.

[50]  J. Gillis,et al.  Laminar flow in a pipe at low and moderate reynolds numbers , 1968 .

[51]  Stefan Radel,et al.  A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves. , 2005, Ultrasound in medicine & biology.

[52]  Christopher S. Kwiatkowski,et al.  Resonator frequency shift due to ultrasonically induced microparticle migration in an aqueous suspension: Observations and model for the maximum frequency shift , 1998 .

[53]  A. Pohl,et al.  Comparison between BAW and SAW sensor principles , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[54]  K. Yosioka,et al.  Acoustic radiation pressure on a compressible sphere , 1955 .

[55]  S. Fukusako,et al.  Visual observation of natural convective flow in a narrow vertical cavity , 1978, Journal of Fluid Mechanics.

[56]  Enrique Riera,et al.  Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams. , 2005, Ultrasonics sonochemistry.

[57]  J. A. Gallego,et al.  PRECISE MEASUREMENTS OF PARTICLE ENTRAINMENT IN A STANDING-WAVE ACOUSTIC FIELD BETWEEN 20 AND 3500 Hz , 2000 .

[58]  Henrik Bruus,et al.  Acoustofluidics 7: The acoustic radiation force on small particles. , 2012, Lab on a chip.

[59]  Martyn Hill,et al.  Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. , 2012, Lab on a chip.

[60]  E. Benes,et al.  Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves. , 2000, Ultrasonics.

[61]  Thomas Laurell,et al.  Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. , 2009, Analytical chemistry.

[62]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[63]  S. Sadhal Acoustofluidics 15: streaming with sound waves interacting with solid particles. , 2012, Lab on a chip.

[64]  Yang Liu,et al.  Particle separation in microfluidics using a switching ultrasonic field. , 2011, Lab on a chip.

[65]  A KoellenspergerP,et al.  王水による化学ウェットエッチングによる白金(Pt)薄膜のパターン形成 , 2012 .

[66]  Ewald Benes,et al.  Quantification of a novel h-shaped ultrasonic resonator for separation of biomaterials under terrestrial gravity and microgravity conditions. , 2003, Biotechnology and bioengineering.

[67]  Gregory Goddard,et al.  Ultrasonic particle concentration in a line-driven cylindrical tube. , 2003, The Journal of the Acoustical Society of America.

[68]  S. Sadhal,et al.  Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods. , 2012, Lab on a chip.

[69]  Nerys E. Thomas,et al.  Sub-micron particle manipulation in an ultrasonic standing wave: Applications in detection of clinically important biomolecules , 2000, Bioseparation.

[70]  Ewald Benes,et al.  A computer-controlled system for the measurement of complete admittance spectra of piezoelectric resonators , 1990 .

[71]  Thomas Laurell,et al.  Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. , 2012, Lab on a chip.