Challenges for Modeling and Simulation Methods in Systems Biology

Systems biology is aimed at analyzing the behavior and interrelationships of biological systems and is characterized by combining experimentation, theory, and computation. Dedicated to exploring current challenges, the panel brings together people from a variety of disciplines whose perspectives illuminate diverse facets of systems biology and the challenges for modeling and simulation methods

[1]  D. Harel,et al.  Toward rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic T-cell maturation. , 2003, Genome research.

[2]  A. Arkin,et al.  Motifs, modules and games in bacteria. , 2003, Current opinion in microbiology.

[3]  Clifford A. Shaffer,et al.  The JigCell Model Builder: a spreadsheet interface for creating biochemical reaction network models , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  Clifford A. Shaffer,et al.  Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle , 2008, J. Glob. Optim..

[5]  Clifford A. Shaffer,et al.  The Role of Composition and Aggregation in Modeling Macromolecular Regulatory Networks , 2006, Proceedings of the 2006 Winter Simulation Conference.

[6]  Lena Strömbäck,et al.  Possibilities and Challenges Using XML Technology for Storage and Integration of Molecular Interactions , 2005, 16th International Workshop on Database and Expert Systems Applications (DEXA'05).

[7]  Patrick Lambrix,et al.  Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX , 2005, Bioinform..

[8]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[9]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[10]  David Harel,et al.  A Turing-like test for biological modeling , 2005, Nature Biotechnology.

[11]  P. Brazhnik,et al.  Linking the genes: inferring quantitative gene networks from microarray data. , 2002, Trends in genetics : TIG.

[12]  Aviv Regev,et al.  The π-calculus as an Abstraction for Biomolecular Systems , 2004 .

[13]  Jane Hillston,et al.  Process algebras for quantitative analysis , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[14]  N. A. Allen,et al.  Improving the Development Process for Eukaryotic Cell Cycle Models with a Modeling Support Environment , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[15]  Robert Gentleman,et al.  Top-down standards will not serve systems biology , 2006, Nature.

[16]  Masaru Tomita,et al.  A multi-algorithm, multi-timescale method for cell simulation , 2004, Bioinform..

[17]  Lena Strömbäck,et al.  A method for comparison of standardized information within systems biology , 2006, WSC '06.

[18]  Gheorghe Paun,et al.  Current Trends in Theoretical Computer Science: The Challenge of the New Century , 2004 .

[19]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[20]  Krishnendu Chatterjee,et al.  Compositional Quantitative Reasoning , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[21]  Hiroaki Kitano,et al.  Software Infrastructure for Effective Communication and Reuse of Computational Models , 2006 .

[22]  David Harel,et al.  A Grand Challenge: Full Reactive Modeling of a Multi-cellular Animal , 2003, HSCC.

[23]  Marta Z. Kwiatkowska,et al.  Simulation and Verification for Computational Modelling of Signalling Pathways , 2006, Proceedings of the 2006 Winter Simulation Conference.

[24]  Peter J. Hunter,et al.  An Overview of CellML 1.1, a Biological Model Description Language , 2003, Simul..

[25]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[26]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[27]  Patrick Lambrix,et al.  A Framework for Aligning Ontologies , 2005, PPSWR.

[28]  Adam P. Arkin,et al.  Statistical Construction of Chemical Reaction Mechanisms from Measured Time-Series , 1995 .

[29]  W. J. Hedley,et al.  A short introduction to CellML , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  F. Collins,et al.  A vision for the future of genomics research , 2003, Nature.

[31]  Hiroaki Kitano,et al.  Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. , 2003, Omics : a journal of integrative biology.

[32]  Ron Weiss,et al.  Synthetic Gene Regulatory Systems , 2006 .

[33]  Yukiko Matsuoka,et al.  Using process diagrams for the graphical representation of biological networks , 2005, Nature Biotechnology.

[34]  Osman Balci,et al.  Issues in Enhancing Model Reuse , 2000 .

[35]  J. Tyson,et al.  Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. , 1993, Journal of cell science.

[36]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Lena Strömbäck,et al.  An Evaluation of the Use of XML for Representation, Querying, and Analysis of Molecular Interactions , 2006, EDBT Workshops.

[38]  Vipul Periwal,et al.  Synthetic Gene Regulatory Systems , 2006 .

[39]  Amir Pnueli,et al.  In Transition From Global to Modular Temporal Reasoning about Programs , 1989, Logics and Models of Concurrent Systems.

[40]  Jan J. M. M. Rutten,et al.  Mathematical techniques for analyzing concurrent and probabilistic systems , 2004, CRM monograph series.

[41]  Corina S. Pasareanu,et al.  Learning Assumptions for Compositional Verification , 2003, TACAS.

[42]  Bernard P. Zeigler,et al.  Discrete Event Multi-level Models for Systems Biology , 2005, Trans. Comp. Sys. Biology.

[43]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[44]  David Harel,et al.  Computational insights into Caenorhabditis elegans vulval development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  David Harel,et al.  Computational Insights into C. elegans Vulval Development , 2005 .

[46]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[47]  Srikanta P Kumar,et al.  BioSPICE: a computational infrastructure for integrative biology. , 2003, Omics : a journal of integrative biology.

[48]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[49]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[50]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[51]  Katherine C. Chen,et al.  Integrative analysis of cell cycle control in budding yeast. , 2004, Molecular biology of the cell.

[52]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[53]  Amir Pnueli,et al.  Formal Modeling of C. elegans Development: A Scenario-Based Approach , 2003, CMSB.

[54]  Nicholas A. Hamilton,et al.  Computer-intensive simulations for cellular models , 2006 .

[55]  R. Laubenbacher,et al.  A computational algebra approach to the reverse engineering of gene regulatory networks. , 2003, Journal of theoretical biology.

[56]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[57]  C. Sander,et al.  The HUPO PSI's Molecular Interaction format—a community standard for the representation of protein interaction data , 2004, Nature Biotechnology.

[58]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[59]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.