Computations with Grossone-Based Infinities

In this paper, a recent computational methodology is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework. It is based on the principle ‘The part is less than the whole’ applied to all quantities (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The methodology uses as a computational device the Infinity Computer (patented in USA and EU) working numerically with infinite and infinitesimal numbers that can be written in a positional system with an infinite radix. On a number of examples dealing mainly with infinite sets and Turing machines with different infinite tapes it is shown that it becomes possible to execute a fine analysis of these mathematical objects. The accuracy of the obtained results is continuously compared with results obtained by traditional tools used to work with mathematical objects involving infinity.

[1]  D. I. Iudin,et al.  Infinity computations in cellular automaton forest-fire model , 2015, Commun. Nonlinear Sci. Numer. Simul..

[2]  Maurice Margenstern Using grossone to count the number of elements of infinite sets and the connection with bijections , 2011, ArXiv.

[3]  J. M. Child The Early Mathematical Manuscripts Of Leibniz , 1921, The Mathematical Gazette.

[4]  W. Luxemburg Non-Standard Analysis , 1977 .

[5]  Brian Butterworth,et al.  Numerical thought with and without words: Evidence from indigenous Australian children , 2008, Proceedings of the National Academy of Sciences.

[6]  Yaroslav D. Sergeyev,et al.  Methodology of Numerical Computations with Infinities and Infinitesimals , 2012, ArXiv.

[7]  Louis D'Alotto,et al.  Cellular automata using infinite computations , 2011, Appl. Math. Comput..

[8]  Yaroslav D. Sergeyev,et al.  Numerical computations and mathematical modelling with infinite and infinitesimal numbers , 2012, ArXiv.

[9]  S. Dehaene,et al.  Exact and Approximate Arithmetic in an Amazonian Indigene Group , 2004, Science.

[10]  Yaroslav D. Sergeyev,et al.  A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities , 2008, Informatica.

[11]  Yaroslav D. Sergeyev,et al.  Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge ☆ , 2009, 1203.3150.

[12]  Yaroslav D. Sergeyev,et al.  The Olympic Medals Ranks, Lexicographic Ordering, and Numerical Infinities , 2015, 1509.04313.

[13]  Donald A. Martin,et al.  Mathematical Problems. Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900 , 1979 .

[14]  Maurice Margenstern,et al.  An application of Grossone to the study of a family of tilings of the hyperbolic plane , 2011, Appl. Math. Comput..

[15]  Renato De Leone,et al.  The use of grossone in Mathematical Programming and Operations Research , 2011, Appl. Math. Comput..

[16]  Alfredo Garro,et al.  Observability of Turing Machines: A Refinement of the Theory of Computation , 2010, Informatica.

[17]  Gabriele Lolli,et al.  Metamathematical investigations on the theory of Grossone , 2015, Appl. Math. Comput..

[18]  Yaroslav D. Sergeyev,et al.  Infinity Computer and Calculus , 2007 .

[19]  Yaroslav D. Sergeyev,et al.  Higher order numerical differentiation on the Infinity Computer , 2011, Optim. Lett..

[20]  Alfredo Garro,et al.  The Grossone Methodology Perspective on Turing Machines , 2015 .

[21]  P. Gordon Numerical Cognition Without Words: Evidence from Amazonia , 2004, Science.

[22]  Gabriele Lolli,et al.  Infinitesimals and infinites in the history of mathematics: A brief survey , 2012, Appl. Math. Comput..

[23]  K. Gödel Consistency of the Continuum Hypothesis. (AM-3) , 1940 .

[24]  Vaclav Smil,et al.  Book of numbers , 1996, Nature.

[25]  Anatoly A. Zhigljavsky,et al.  Computing sums of conditionally convergent and divergent series using the concept of grossone , 2012, Appl. Math. Comput..

[26]  Zoran Salcic,et al.  An Ultra-Low Power Miniaturised Wireless Mote for Ubiquitous Data Acquisition , 2015 .

[27]  Bruce W. Rogers Consistency of the Continuum Hypothesis , 2005 .

[28]  Antanas Zilinskas,et al.  On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions , 2011, Appl. Math. Comput..

[29]  Maurice Margenstern Fibonacci words, hyperbolic tilings and grossone , 2015, Commun. Nonlinear Sci. Numer. Simul..

[30]  Alfredo Garro,et al.  Single-tape and multi-tape Turing machines through the lens of the Grossone methodology , 2013, The Journal of Supercomputing.

[31]  Yaroslav D. Sergeyev,et al.  On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function , 2011, 1203.4142.

[32]  Yaroslav D. Sergeyev,et al.  Counting systems and the First Hilbert problem , 2010, 1203.4141.

[33]  Yaroslav D. Sergeyev Using Blinking Fractals for Mathematical Modeling of Processes of Growth in Biological Systems , 2011, Informatica.

[34]  Yaroslav D. Sergeyev,et al.  Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer , 2013 .

[35]  Rodolfo Gonzalez Orders of Infinity , 2016 .

[36]  C. J. Keyser Contributions to the Founding of the Theory of Transfinite Numbers , 1916 .

[37]  Louis D'Alotto A classification of one-dimensional cellular automata using infinite computations , 2015, Appl. Math. Comput..

[38]  M. Potter Orders of infinity , 2004 .

[39]  Massimo Veltri,et al.  Usage of infinitesimals in the Menger's Sponge model of porosity , 2011, Appl. Math. Comput..

[40]  Yaroslav D. Sergeyev,et al.  Interpretation of percolation in terms of infinity computations , 2012, Appl. Math. Comput..

[41]  Yaroslav D. Sergeyev,et al.  Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers , 2007 .

[42]  G. Leder Mathematics for All? The Case for and Against National Testing , 2015 .

[43]  Yaroslav D. Sergeyev,et al.  Solving ordinary differential equations on the Infinity Computer by working with infinitesimals numerically , 2013, Appl. Math. Comput..

[44]  Yaroslav D. Sergeyev,et al.  Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains , 2009, 1203.4140.

[45]  Yaroslav D. Sergeyev,et al.  Numerical Computations with Infinite and Infinitesimal Numbers: Theory and Applications , 2013 .