Application of the Direct Quadrature Method of Moments for the modelling of the enzymatic hydrolysis of cellulose: II. Case of insoluble substrate

[1]  Jérôme Morchain,et al.  Reconstruction of a distribution from a finite number of its moments: A comparative study in the case of depolymerization process , 2016, Comput. Chem. Eng..

[2]  Jérôme Morchain,et al.  Population balance approach for the modelling of enzymatic hydrolysis of cellulose , 2015 .

[3]  Yong Kuen Ho,et al.  Modeling chain-end scission using the Fixed Pivot technique , 2014 .

[4]  C. Frances,et al.  Comminution process modeling based on the monovariate and bivariate direct quadrature method of moments , 2014 .

[5]  A. Costa,et al.  Study of kinetic parameters in a mechanistic model for enzymatic hydrolysis of sugarcane bagasse subjected to different pretreatments , 2013, Bioprocess and Biosystems Engineering.

[6]  B. Pletschke,et al.  A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. , 2012, Biotechnology advances.

[7]  Volker John,et al.  On the efficiency and robustness of the core routine of the quadrature method of moments (QMOM) , 2012 .

[8]  Andrew J. Griggs,et al.  A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: Depolymerization by EGI and CBHI , 2012, Biotechnology and bioengineering.

[9]  Andrew J. Griggs,et al.  A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: Cooperative enzyme action, solution kinetics, and product inhibition , 2012, Biotechnology and bioengineering.

[10]  M. Taherzadeh,et al.  Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO , 2012, Journal of Industrial Microbiology & Biotechnology.

[11]  David K. Johnson,et al.  Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility , 2011, Biotechnology for biofuels.

[12]  N. Shah,et al.  Modelling enzymatic hydrolysis of cellulose part I: Population balance modelling of hydrolysis by endoglucanase , 2011 .

[13]  Nilay Shah,et al.  Enzymatic hydrolysis of cellulose part II: Population balance modelling of hydrolysis by exoglucanase and universal kinetic model , 2011 .

[14]  C. Yuan,et al.  Conditional quadrature method of moments for kinetic equations , 2011, J. Comput. Phys..

[15]  E. Crespo Application of particle fracture energy distributions to ball milling kinetics , 2011 .

[16]  Zhimin He,et al.  Bioconversion of Lignocellulose into Bioethanol: Process Intensification and Mechanism Research , 2011, BioEnergy Research.

[17]  J. Morchain,et al.  A unique phenotypic modification of Lactococcus lactis cultivated in a couette bioreactor , 2011, Biotechnology and bioengineering.

[18]  Krist V. Gernaey,et al.  Assessing reliability of cellulose hydrolysis models to support biofuel process design - Identifiability and uncertainty analysis , 2010, Comput. Chem. Eng..

[19]  H. Blanch,et al.  A mechanistic model of the enzymatic hydrolysis of cellulose , 2010, Biotechnology and bioengineering.

[20]  Jay H. Lee,et al.  Modeling cellulase kinetics on lignocellulosic substrates. , 2009, Biotechnology advances.

[21]  Gerassimos A. Athanassoulis,et al.  Moment information for probability distributions, without solving the moment problem, II: Main-mass, tails and shape approximation , 2009 .

[22]  Ruihong Zhang,et al.  Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass , 2009, Biotechnology and bioengineering.

[23]  M. Michelsen,et al.  Hydrolysis of Cellulose Using Mono-Component Enzymes Shows Synergy during Hydrolysis of Phosphoric Acid Swollen Cellulose (PASC), but Competition on Avicel , 2008 .

[24]  C. Felby,et al.  Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities , 2007 .

[25]  Volker John,et al.  Techniques for the reconstruction of a distribution from a finite number of its moments , 2007 .

[26]  Feng Xu,et al.  A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis : Contributions from the fractal and jamming (overcrowding) effects , 2007 .

[27]  Charles E Wyman,et al.  Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion , 2006, Biotechnology and bioengineering.

[28]  L. Hildén,et al.  Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity , 2004, Biotechnology Letters.

[29]  Göran Pettersson,et al.  Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate , 2004, Biotechnology and bioengineering.

[30]  A. Liné,et al.  Forces on Spherical Particles in Terms of Upstream Flow Characteristics , 2003 .

[31]  F. Laurent,et al.  An extended quadrature method of moments for population balance equations , 2003 .

[32]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[33]  P A Vanrolleghem,et al.  Modelling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM). , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[34]  P. Kleinebudde,et al.  Influence of cellulose type on the properties of extruded pellets. Part I. Physicochemical characterisation of the cellulose types after homogenisation , 2000 .

[35]  M. Kostoglou Mathematical analysis of polymer degradation with chain-end scission , 2000 .

[36]  Aldo Tagliani,et al.  Hausdorff moment problem and maximum entropy: A unified approach , 1999, Appl. Math. Comput..

[37]  Peter Kleinebudde,et al.  The Crystallite-Gel-Model for Microcrystalline Cellulose in Wet-Granulation, Extrusion, and Spheronization , 1997, Pharmaceutical Research.

[38]  Patrick T. Spicer,et al.  Coagulation and fragmentation: Universal steady‐state particle‐size distribution , 1996 .

[39]  D. Ramkrishna,et al.  On the solution of population balance equations by discretization—II. A moving pivot technique , 1996 .

[40]  Lee R. Lynd,et al.  Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors , 1995 .

[41]  J. Smith,et al.  Continuous kinetics for thermal degradation of polymer in solution , 1995 .

[42]  B. J. McCoy,et al.  Continuous-mixture fragmentation kinetics: particle size reduction and molecular cracking , 1994 .

[43]  Robert M. Ziff,et al.  The kinetics of cluster fragmentation and depolymerisation , 1985 .

[44]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .

[45]  L T Fan,et al.  Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Derivation of a mechanistic kinetic model , 1983, Biotechnology and bioengineering.

[46]  Roy G. Gordon,et al.  Error Bounds in Equilibrium Statistical Mechanics , 1968 .

[47]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[48]  Finola E. Cliffe,et al.  Enzymatic Saccharification of Lignocellulosic Biomass , 2013 .

[49]  Michael J. Hounslow,et al.  Population balance modelling of activated sludge flocculation : Investigating the size dependence of aggregation, breakage and collision efficiency , 2006 .

[50]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[51]  John N. Saddler,et al.  Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates , 2004 .

[52]  K. Kadam,et al.  Development and Validation of a Kinetic Model for Enzymatic Saccharification of Lignocellulosic Biomass , 2004, Biotechnology progress.

[53]  Jay J. Cheng,et al.  HYDROLYSIS OF LIGNOCELLULOSIC MATERIALS FOR ETHANOL PRODUCTION , 2002 .

[54]  J. Saddler,et al.  Substrate and Enzyme Characteristics that Limit Cellulose Hydrolysis , 1999, Biotechnology progress.

[55]  D. Gregg,et al.  Bioconversion of lignocellulosic residue to ethanol: Process flowsheet development , 1995 .