The wavelet transform, time-frequency localization and signal analysis

Two different procedures for effecting a frequency analysis of a time-dependent signal locally in time are studied. The first procedure is the short-time or windowed Fourier transform; the second is the wavelet transform, in which high-frequency components are studied with sharper time resolution than low-frequency components. The similarities and the differences between these two methods are discussed. For both schemes a detailed study is made of the reconstruction method and its stability as a function of the chosen time-frequency density. Finally, the notion of time-frequency localization is made precise, within this framework, by two localization theorems. >

[1]  Dennis Gabor,et al.  Theory of communication , 1946 .

[2]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[3]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[4]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[5]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[6]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[7]  Carl W. Helstrom,et al.  An expansion of a signal in Gaussian elementary signals (Corresp.) , 1966, IEEE Trans. Inf. Theory.

[8]  M. M. Miller,et al.  Fundamentals of Quantum Optics , 1968 .

[9]  J. Zak Dynamics of Electrons in Solids in External Fields , 1968 .

[10]  J. Klauder,et al.  Unitary Representations of the Affine Group , 1968 .

[11]  J. Kemperman,et al.  On the regularity of generalized convex functions , 1969 .

[12]  J. Klauder,et al.  Continuous Representation Theory Using the Affine Group , 1969 .

[13]  V. Bargmann,et al.  On the Completeness of Coherent States , 1971 .

[14]  A. Perelomov On the completeness of a system of coherent states , 1971, math-ph/0210005.

[15]  J. Zak The Kq-Representation in the Dynamics of Electrons in Solids , 1972 .

[16]  A. Grossmann,et al.  Proof of completeness of lattice states in the k q representation , 1975 .

[17]  J. Zak Lattice operators in crystals for Bravais and reciprocal vectors , 1975 .

[18]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[19]  Michael J Davis,et al.  Semiclassical Gaussian basis set method for molecular vibrational wave functions , 1979 .

[20]  Martin J. Bastiaans,et al.  Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1980, Other Conferences.

[21]  M. Bastiaans,et al.  Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.

[22]  T. Claasen,et al.  THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .

[23]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[24]  M. Reed,et al.  Methods of Mathematical Physics , 1980 .

[25]  G. Hagedorn Semiclassical quantum mechanics , 1980 .

[26]  G. Hagedorn Semiclassical quantum mechanics for coherent states , 1980 .

[27]  G. Weiss,et al.  Representation theorems for holomorphic and harmonic functions in L[P] . The molecular characterization of certain Hardy spaces , 1980 .

[28]  Mj Martin Bastiaans A Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1981 .

[29]  M. Rieffel Von Neumann algebras associated with pairs of lattices in Lie groups , 1981 .

[30]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[31]  A. Janssen Gabor representation of generalized functions , 1981 .

[32]  R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .

[33]  A. Janssen Bargmann transform, Zak transform, and coherent states , 1982 .

[34]  J. Morlet,et al.  Wave propagation and sampling theory—Part II: Sampling theory and complex waves , 1982 .

[35]  R. E. Raab Gabor's Signal Expansion and Degrees of Freedom of a Signal , 1982 .

[36]  J. Zak,et al.  Rational von Neumann lattices , 1983 .

[37]  C. H. Chen,et al.  Issues in Acoustic Signal — Image Processing and Recognition , 2011, NATO ASI Series.

[38]  Cornelis P. Janse,et al.  Time-Frequency Distributions of Loudspeakers: The Application of the Wigner Distribution , 1983 .

[39]  W. Schempp Radar ambiguity functions, the Heisenberg group, and holomorphic theta series , 1984 .

[40]  Augustus J. E. M. Janssen,et al.  Gabor representation and Wigner distribution of signals , 1984, ICASSP.

[41]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[42]  F. Low Complete sets of wave packets , 1985 .

[43]  A. Grossmann,et al.  DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .

[44]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[45]  C. Fefferman,et al.  Relativistic Stability of Matter - I , 1986 .

[46]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[47]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[48]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[49]  P. Federbush,et al.  Ondelettes and phase cell cluster expansions, a vindication , 1987 .

[50]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[51]  Richard Kronland-Martinet,et al.  Detection of abrupt changes in sound signals with the help of wavelet transforms , 1987 .

[52]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[53]  I. Daubechies Discrete sets of coherent states and their use in signal analysis , 1987 .

[54]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[55]  Tom Høholdt,et al.  Double series representation of bounded signals , 1988, IEEE Trans. Inf. Theory.

[56]  A. Arneodo,et al.  Wavelet transform of multifractals. , 1988, Physical review letters.

[57]  G. Battle Heisenberg proof of the Balian-Low theorem , 1988 .

[58]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[59]  A. Grossmann,et al.  Wavelet Transforms and Edge Detection , 1988 .

[60]  I. Daubechies,et al.  Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations , 1988 .

[61]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .

[62]  H. Feichtinger,et al.  A unified approach to atomic decompositions via integrable group representations , 1988 .

[63]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[64]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Alain Arneodo,et al.  Wavelet Transform Analysis of Invariant Measures of Some Dynamical Systems , 1989 .