The wavelet transform, time-frequency localization and signal analysis
暂无分享,去创建一个
[1] Dennis Gabor,et al. Theory of communication , 1946 .
[2] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[3] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[4] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[5] R. Glauber. Coherent and incoherent states of the radiation field , 1963 .
[6] R. Glauber. The Quantum Theory of Optical Coherence , 1963 .
[7] Carl W. Helstrom,et al. An expansion of a signal in Gaussian elementary signals (Corresp.) , 1966, IEEE Trans. Inf. Theory.
[8] M. M. Miller,et al. Fundamentals of Quantum Optics , 1968 .
[9] J. Zak. Dynamics of Electrons in Solids in External Fields , 1968 .
[10] J. Klauder,et al. Unitary Representations of the Affine Group , 1968 .
[11] J. Kemperman,et al. On the regularity of generalized convex functions , 1969 .
[12] J. Klauder,et al. Continuous Representation Theory Using the Affine Group , 1969 .
[13] V. Bargmann,et al. On the Completeness of Coherent States , 1971 .
[14] A. Perelomov. On the completeness of a system of coherent states , 1971, math-ph/0210005.
[15] J. Zak. The Kq-Representation in the Dynamics of Electrons in Solids , 1972 .
[16] A. Grossmann,et al. Proof of completeness of lattice states in the k q representation , 1975 .
[17] J. Zak. Lattice operators in crystals for Bravais and reciprocal vectors , 1975 .
[18] D. Slepian,et al. On bandwidth , 1976, Proceedings of the IEEE.
[19] Michael J Davis,et al. Semiclassical Gaussian basis set method for molecular vibrational wave functions , 1979 .
[20] Martin J. Bastiaans,et al. Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1980, Other Conferences.
[21] M. Bastiaans,et al. Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.
[22] T. Claasen,et al. THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .
[23] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[24] M. Reed,et al. Methods of Mathematical Physics , 1980 .
[25] G. Hagedorn. Semiclassical quantum mechanics , 1980 .
[26] G. Hagedorn. Semiclassical quantum mechanics for coherent states , 1980 .
[27] G. Weiss,et al. Representation theorems for holomorphic and harmonic functions in L[P] . The molecular characterization of certain Hardy spaces , 1980 .
[28] Mj Martin Bastiaans. A Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1981 .
[29] M. Rieffel. Von Neumann algebras associated with pairs of lattices in Lie groups , 1981 .
[30] E. Lieb. Thomas-fermi and related theories of atoms and molecules , 1981 .
[31] A. Janssen. Gabor representation of generalized functions , 1981 .
[32] R. Balian. Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .
[33] A. Janssen. Bargmann transform, Zak transform, and coherent states , 1982 .
[34] J. Morlet,et al. Wave propagation and sampling theory—Part II: Sampling theory and complex waves , 1982 .
[35] R. E. Raab. Gabor's Signal Expansion and Degrees of Freedom of a Signal , 1982 .
[36] J. Zak,et al. Rational von Neumann lattices , 1983 .
[37] C. H. Chen,et al. Issues in Acoustic Signal — Image Processing and Recognition , 2011, NATO ASI Series.
[38] Cornelis P. Janse,et al. Time-Frequency Distributions of Loudspeakers: The Application of the Wigner Distribution , 1983 .
[39] W. Schempp. Radar ambiguity functions, the Heisenberg group, and holomorphic theta series , 1984 .
[40] Augustus J. E. M. Janssen,et al. Gabor representation and Wigner distribution of signals , 1984, ICASSP.
[41] A. Grossmann,et al. DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .
[42] F. Low. Complete sets of wave packets , 1985 .
[43] A. Grossmann,et al. DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .
[44] A. Grossmann,et al. Transforms associated to square integrable group representations. I. General results , 1985 .
[45] C. Fefferman,et al. Relativistic Stability of Matter - I , 1986 .
[46] Y. Meyer,et al. Ondelettes et bases hilbertiennes. , 1986 .
[47] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[48] Y. Meyer. Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .
[49] P. Federbush,et al. Ondelettes and phase cell cluster expansions, a vindication , 1987 .
[50] G. Battle. A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .
[51] Richard Kronland-Martinet,et al. Detection of abrupt changes in sound signals with the help of wavelet transforms , 1987 .
[52] Richard Kronland-Martinet,et al. Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..
[53] I. Daubechies. Discrete sets of coherent states and their use in signal analysis , 1987 .
[54] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[55] Tom Høholdt,et al. Double series representation of bounded signals , 1988, IEEE Trans. Inf. Theory.
[56] A. Arneodo,et al. Wavelet transform of multifractals. , 1988, Physical review letters.
[57] G. Battle. Heisenberg proof of the Balian-Low theorem , 1988 .
[58] Ingrid Daubechies,et al. Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.
[59] A. Grossmann,et al. Wavelet Transforms and Edge Detection , 1988 .
[60] I. Daubechies,et al. Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations , 1988 .
[61] I. Daubechies,et al. Frames in the Bargmann Space of Entire Functions , 1988 .
[62] H. Feichtinger,et al. A unified approach to atomic decompositions via integrable group representations , 1988 .
[63] Stéphane Mallat,et al. Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..
[64] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[65] Alain Arneodo,et al. Wavelet Transform Analysis of Invariant Measures of Some Dynamical Systems , 1989 .