Sparse Riemannian manifold clustering for HARDI segmentation

We address the problem of segmenting high angular resolution diffusion images of the brain into cerebral regions corresponding to distinct white matter fiber bundles. We cast this problem as a manifold clustering problem in which distinct fiber bundles correspond to different submanifolds of the space of orientation distribution functions (ODFs). Our approach integrates tools from sparse representation theory into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for the ODF at each voxel and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. We evaluate the performance of our method via experiments on synthetic, phantom and real data.

[1]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  M. Salman Asif,et al.  Dynamic Updating for ` 1 Minimization , 2009 .

[3]  Christophe Lenglet,et al.  ODF reconstruction in q-ball imaging with solid angle consideration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[4]  Xavier Bresson,et al.  Representing Diffusion MRI in 5-D Simplifies Regularization and Segmentation of White Matter Tracts , 2007, IEEE Transactions on Medical Imaging.

[5]  Rachid Deriche,et al.  A Riemannian Framework for Orientation Distribution Function Computing , 2009, MICCAI.

[6]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[7]  Baba C. Vemuri,et al.  Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures , 2006, ECCV.

[8]  Rachid Deriche,et al.  High Angular Resolution Diffusion MRI Segmentation Using Region-Based Statistical Surface Evolution , 2009, Journal of Mathematical Imaging and Vision.

[9]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[10]  Rachid Deriche,et al.  Diffusion Maps Clustering for Magnetic Resonance Q-Ball Imaging Segmentation , 2008, Int. J. Biomed. Imaging.

[11]  Christophe Lenglet,et al.  Estimating Orientation Distribution Functions with Probability Density Constraints and Spatial Regularity , 2009, MICCAI.

[12]  Justin K. Romberg,et al.  Dynamic Updating for $\ell_{1}$ Minimization , 2009, IEEE Journal of Selected Topics in Signal Processing.

[13]  R. Vidal,et al.  A nonparametric Riemannian framework for processing high angular resolution diffusion images (HARDI) , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Jean-Philippe Thiran,et al.  Fibertract segmentation in position orientation space from high angular resolution diffusion MRI , 2006, NeuroImage.

[15]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[16]  René Vidal,et al.  Clustering and dimensionality reduction on Riemannian manifolds , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[18]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[19]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.