Sparse Riemannian manifold clustering for HARDI segmentation
暂无分享,去创建一个
[1] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[2] M. Salman Asif,et al. Dynamic Updating for ` 1 Minimization , 2009 .
[3] Christophe Lenglet,et al. ODF reconstruction in q-ball imaging with solid angle consideration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
[4] Xavier Bresson,et al. Representing Diffusion MRI in 5-D Simplifies Regularization and Segmentation of White Matter Tracts , 2007, IEEE Transactions on Medical Imaging.
[5] Rachid Deriche,et al. A Riemannian Framework for Orientation Distribution Function Computing , 2009, MICCAI.
[6] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[7] Baba C. Vemuri,et al. Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures , 2006, ECCV.
[8] Rachid Deriche,et al. High Angular Resolution Diffusion MRI Segmentation Using Region-Based Statistical Surface Evolution , 2009, Journal of Mathematical Imaging and Vision.
[9] René Vidal,et al. Sparse subspace clustering , 2009, CVPR.
[10] Rachid Deriche,et al. Diffusion Maps Clustering for Magnetic Resonance Q-Ball Imaging Segmentation , 2008, Int. J. Biomed. Imaging.
[11] Christophe Lenglet,et al. Estimating Orientation Distribution Functions with Probability Density Constraints and Spatial Regularity , 2009, MICCAI.
[12] Justin K. Romberg,et al. Dynamic Updating for $\ell_{1}$ Minimization , 2009, IEEE Journal of Selected Topics in Signal Processing.
[13] R. Vidal,et al. A nonparametric Riemannian framework for processing high angular resolution diffusion images (HARDI) , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.
[14] Jean-Philippe Thiran,et al. Fibertract segmentation in position orientation space from high angular resolution diffusion MRI , 2006, NeuroImage.
[15] D. Donoho. For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .
[16] René Vidal,et al. Clustering and dimensionality reduction on Riemannian manifolds , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[17] D. Tuch. Q‐ball imaging , 2004, Magnetic resonance in medicine.
[18] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[19] R. Deriche,et al. Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.