The ubiquitous role of ubiquitin in the DNA damage response

[1]  A. Gingras,et al.  Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1 , 2010, Nature.

[2]  Christine Yu,et al.  K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. , 2010, Molecular cell.

[3]  E. Yeh,et al.  Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. , 2010, Molecular cell.

[4]  Junya Chen,et al.  FAN1 Acts with FANCI-FANCD2 to Promote DNA Interstrand Cross-Link Repair , 2010, Science.

[5]  P. Russell,et al.  BRCT Domain Interactions with Phospho-Histone H2A Target Crb2 to Chromatin at Double-Strand Breaks and Maintain the DNA Damage Checkpoint , 2010, Molecular and Cellular Biology.

[6]  Steven L. Sanders,et al.  Requirement for the Phospho-H2AX Binding Module of Crb2 in Double-Strand Break Targeting and Checkpoint Activation , 2010, Molecular and Cellular Biology.

[7]  David Komander,et al.  Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne , 2010, Nature Structural &Molecular Biology.

[8]  D. Durocher,et al.  DNA repair has a new FAN1 club. , 2010, Molecular cell.

[9]  S. Jackson,et al.  DNA damage signaling in response to double-strand breaks during mitosis , 2010, The Journal of cell biology.

[10]  M. Hengartner,et al.  Deficiency of FANCD2-Associated Nuclease KIAA1018/FAN1 Sensitizes Cells to Interstrand Crosslinking Agents , 2010, Cell.

[11]  J Wade Harper,et al.  A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. , 2010, Molecular cell.

[12]  Kay Hofmann,et al.  Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2 , 2010, Cell.

[13]  Nadine H. Elowe,et al.  An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase , 2010, Nature Biotechnology.

[14]  K. Houk,et al.  Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. , 2010, Nature biotechnology.

[15]  R. Greenberg,et al.  ATM-Dependent Chromatin Changes Silence Transcription In cis to DNA Double-Strand Breaks , 2010, Cell.

[16]  Joanna R. Morris More modifiers move on DNA damage. , 2010, Cancer research.

[17]  A. Davies,et al.  Ubiquitin-dependent DNA damage bypass is separable from genome replication , 2010, Nature.

[18]  M. Nussenzweig,et al.  Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8 , 2010, The Journal of experimental medicine.

[19]  D. Durocher,et al.  Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer , 2010, The Journal of experimental medicine.

[20]  S. Jentsch,et al.  The RAD6 DNA Damage Tolerance Pathway Operates Uncoupled from the Replication Fork and Is Functional Beyond S Phase , 2010, Cell.

[21]  Lin-Yu Lu,et al.  RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. , 2010, Developmental cell.

[22]  H. Piwnica-Worms,et al.  Casein Kinase 1 Functions as both Penultimate and Ultimate Kinase in Regulating Cdc25A Destruction , 2010, Oncogene.

[23]  C. Lilley,et al.  A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses , 2010, The EMBO journal.

[24]  M. Mann,et al.  Regulation of Translesion Synthesis Dna Polymerase by Η Monoubiquitination Elsevier Editorial System(tm) for Molecular Cell Manuscript Draft Title: Regulation of Translesion Synthesis Dna Polymerase Η by Monoubiquitination Molecular Signaling Cancer Cell Signaling M. Innocenti, Phd Regulation of Tra , 2022 .

[25]  Joanna R. Morris SUMO in the mammalian response to DNA damage. , 2010, Biochemical Society transactions.

[26]  M. Malumbres,et al.  The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. , 2010, Biochemical Society transactions.

[27]  K. Helin,et al.  NEK11−Linking CHK1 and CDC25A in DNA damage checkpoint signaling , 2010, Cell cycle.

[28]  A. Shibata,et al.  53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair , 2010, Nature Cell Biology.

[29]  D. Durocher,et al.  The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination , 2009, Proceedings of the National Academy of Sciences.

[30]  Melanie Keppler,et al.  The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress , 2009, Nature.

[31]  S. Jackson,et al.  Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks , 2009, Nature.

[32]  D. Komander The emerging complexity of protein ubiquitination. , 2009, Biochemical Society transactions.

[33]  Robert E. Kingston,et al.  Mechanisms of Polycomb gene silencing: knowns and unknowns , 2009, Nature Reviews Molecular Cell Biology.

[34]  K. Helin,et al.  NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint , 2009, Nature Cell Biology.

[35]  D. Cortez,et al.  Common mechanisms of PIKK regulation. , 2009, DNA repair.

[36]  Yusuke Sato,et al.  Structural basis for specific recognition of Lys 63‐linked polyubiquitin chains by tandem UIMs of RAP80 , 2009, The EMBO journal.

[37]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[38]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[39]  Peter G. Smith,et al.  Targeting NEDD8-Activated Cullin-RING Ligases for the Treatment of Cancer , 2009, Clinical Cancer Research.

[40]  Keith D Wilkinson,et al.  Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. , 2009, Annual review of biochemistry.

[41]  David Komander,et al.  Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains , 2009, EMBO reports.

[42]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[43]  D. Durocher,et al.  Regulatory ubiquitylation in response to DNA double-strand breaks. , 2009, DNA repair.

[44]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[45]  Joshua J. Sims,et al.  Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. , 2009, Molecular cell.

[46]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[47]  J. Glover,et al.  RAD18 transmits DNA damage signaling to elicit homologous recombination repair , 2009, Nature Cell Biology.

[48]  Troels Z. Kristiansen,et al.  K63‐specific deubiquitination by two JAMM/MPN+ complexes: BRISC‐associated Brcc36 and proteasomal Poh1 , 2009, The EMBO journal.

[49]  Tao Wang,et al.  Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. , 2009, Journal of molecular biology.

[50]  R. Greenberg,et al.  The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks , 2009, Proceedings of the National Academy of Sciences.

[51]  S. H. Baek,et al.  Emerging roles of desumoylating enzymes. , 2009, Biochimica et biophysica acta.

[52]  E. Fiebiger,et al.  Structural basis and specificity of human otubain 1-mediated deubiquitination. , 2009, The Biochemical journal.

[53]  K. Wilkinson,et al.  Polyubiquitin binding and disassembly by deubiquitinating enzymes. , 2009, Chemical reviews.

[54]  A. D’Andrea,et al.  Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. , 2009, Developmental cell.

[55]  J. Ellenberg,et al.  RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins , 2009, Cell.

[56]  Edward S. Miller,et al.  The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage , 2009, Cell.

[57]  N. Mailand,et al.  USP7 counteracts SCFβTrCP- but not APCCdh1-mediated proteolysis of Claspin , 2009, The Journal of cell biology.

[58]  S. Elledge,et al.  FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway , 2008, Nature Structural &Molecular Biology.

[59]  Y. Dou,et al.  Histone Ubiquitination Associates with BRCA1-Dependent DNA Damage Response , 2008, Molecular and Cellular Biology.

[60]  H. Ulrich The fast-growing business of SUMO chains. , 2008, Molecular cell.

[61]  Weidong Wang A major switch for the Fanconi anemia DNA damage–response pathway , 2008, Nature Structural &Molecular Biology.

[62]  Wentao Fu,et al.  A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication , 2008, Proceedings of the National Academy of Sciences.

[63]  M. Nussenzweig,et al.  53BP1 facilitates long-range DNA end-joining during V(D)J recombination , 2008, Nature.

[64]  T. Orr-Weaver,et al.  Regulation of APC/C activators in mitosis and meiosis. , 2008, Annual review of cell and developmental biology.

[65]  M. Peter,et al.  Function and regulation of protein neddylation , 2008, EMBO reports.

[66]  K. Wilkinson,et al.  Protein partners of deubiquitinating enzymes. , 2008, The Biochemical journal.

[67]  S. Akira,et al.  Noncanonical E2 Variant-Independent Function of UBC13 in Promoting Checkpoint Protein Assembly , 2008, Molecular and Cellular Biology.

[68]  M. Pagano,et al.  The Cdc14B-Cdh1-Plk1 Axis Controls the G2 DNA-Damage-Response Checkpoint , 2008, Cell.

[69]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[70]  A. Gurtan,et al.  Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. , 2008, Blood.

[71]  D. Alessi,et al.  Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. , 2008, The Biochemical journal.

[72]  M. Rapé,et al.  Mechanism of Ubiquitin-Chain Formation by the Human Anaphase-Promoting Complex , 2008, Cell.

[73]  A. Ashworth,et al.  The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. , 2008, Molecular cell.

[74]  P. Cohen,et al.  Interleukin-1 (IL-1) Induces the Lys63-Linked Polyubiquitination of IL-1 Receptor-Associated Kinase 1 To Facilitate NEMO Binding and the Activation of IκBα Kinase , 2008, Molecular and Cellular Biology.

[75]  S. Elledge,et al.  Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage , 2007, Proceedings of the National Academy of Sciences.

[76]  J. Sale,et al.  Deubiquitination of FANCD2 Is Required for DNA Crosslink Repair , 2007, Molecular cell.

[77]  Laurence Pelletier,et al.  Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase , 2007, Science.

[78]  Michael B. Yaffe,et al.  RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly , 2007, Cell.

[79]  Jiri Bartek,et al.  RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins , 2007, Cell.

[80]  Pier Paolo Di Fiore,et al.  Human USP3 Is a Chromatin Modifier Required for S Phase Progression and Genome Stability , 2007, Current Biology.

[81]  Jinke Cheng,et al.  SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia , 2007, Cell.

[82]  Hengbin Wang,et al.  Regulation of cell cycle progression and gene expression by H2A deubiquitination , 2007, Nature.

[83]  Anindya Dutta,et al.  UBE2T, the Fanconi Anemia Core Complex, and FANCD2 Are Recruited Independently to Chromatin: a Basis for the Regulation of FANCD2 Monoubiquitination , 2007, Molecular and Cellular Biology.

[84]  Weidong Wang Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins , 2007, Nature Reviews Genetics.

[85]  Xiaochun Yu,et al.  CCDC98 targets BRCA1 to DNA damage sites , 2007, Nature Structural &Molecular Biology.

[86]  F. Xia,et al.  The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. , 2007, Cancer research.

[87]  G. Cuny,et al.  Structure-activity relationship, kinetic mechanism, and selectivity for a new class of ubiquitin C-terminal hydrolase-L1 (UCH-L1) inhibitors. , 2007, Bioorganic & medicinal chemistry letters.

[88]  Hans Joenje,et al.  Fanconi anemia and DNA replication repair. , 2007, DNA repair.

[89]  Steven P Gygi,et al.  Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages* , 2007, Journal of Biological Chemistry.

[90]  E. Spiteri,et al.  FANCI is a second monoubiquitinated member of the Fanconi anemia pathway , 2007, Nature Structural &Molecular Biology.

[91]  Junjie Chen,et al.  Ubiquitin-Binding Protein RAP80 Mediates BRCA1-Dependent DNA Damage Response , 2007, Science.

[92]  Aedín C Culhane,et al.  RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites , 2007, Science.

[93]  Steven P Gygi,et al.  Abraxas and RAP80 Form a BRCA1 Protein Complex Required for the DNA Damage Response , 2007, Science.

[94]  S. Jentsch,et al.  PCNA, the Maestro of the Replication Fork , 2007, Cell.

[95]  C. Mathew,et al.  Identification of the Fanconi Anemia Complementation Group I Gene, FANCI , 2007, Cellular oncology : the official journal of the International Society for Cellular Oncology.

[96]  S. Elledge,et al.  Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair , 2007, Cell.

[97]  F. Bunz,et al.  ATM and ATR: Components of an Integrated Circuit , 2007, Cell cycle.

[98]  Georges Mer,et al.  Structural Basis for the Methylation State-Specific Recognition of Histone H4-K20 by 53BP1 and Crb2 in DNA Repair , 2006, Cell.

[99]  James E Haber,et al.  Surviving the breakup: the DNA damage checkpoint. , 2006, Annual review of genetics.

[100]  Junjie Chen,et al.  Repeated Phosphopeptide Motifs in Human Claspin Are Phosphorylated by Chk1 and Mediate Claspin Function* , 2006, Journal of Biological Chemistry.

[101]  A. Israël,et al.  Itch/AIP4 mediates Deltex degradation through the formation of K29‐linked polyubiquitin chains , 2006, EMBO reports.

[102]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[103]  Anastassis Perrakis,et al.  Polo-like Kinase-1 Controls Proteasome-Dependent Degradation of Claspin during Checkpoint Recovery , 2006, Current Biology.

[104]  J. Peters The anaphase promoting complex/cyclosome: a machine designed to destroy , 2006, Nature Reviews Molecular Cell Biology.

[105]  Anindya Dutta,et al.  UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. , 2006, Molecular cell.

[106]  T. Mak,et al.  A Role for the Deubiquitinating Enzyme USP28 in Control of the DNA-Damage Response , 2006, Cell.

[107]  Jiri Bartek,et al.  Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. , 2006, Molecular cell.

[108]  Michele Pagano,et al.  SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. , 2006, Molecular cell.

[109]  N. Mailand,et al.  Claspin Operates Downstream of TopBP1 To Direct ATR Signaling towards Chk1 Activation , 2006, Molecular and Cellular Biology.

[110]  C. Chini,et al.  Chk1 is required to maintain Claspin stability , 2006, Oncogene.

[111]  Ali Shilatifard,et al.  Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. , 2006, Annual review of biochemistry.

[112]  H. Ploegh,et al.  The SUMO-Specific Protease SENP5 Is Required for Cell Division , 2006, Molecular and Cellular Biology.

[113]  A. D’Andrea,et al.  Regulation of DNA repair by ubiquitylation , 2006, Nature Reviews Molecular Cell Biology.

[114]  M. Pagano,et al.  Stabilizers and destabilizers controlling cell cycle oscillators. , 2006, Molecular cell.

[115]  A. G. Murachelli,et al.  Crystal Structure of the Ubiquitin Binding Domains of Rabex-5 Reveals Two Modes of Interaction with Ubiquitin , 2006, Cell.

[116]  S. Gygi,et al.  Regulation of monoubiquitinated PCNA by DUB autocleavage , 2006, Nature Cell Biology.

[117]  Chen-Yang Shen,et al.  Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. , 2006, Cancer research.

[118]  D. Hallahan,et al.  Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. , 2006, Cancer research.

[119]  F. Alt,et al.  MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. , 2006, Molecular cell.

[120]  M. Yaffe,et al.  MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks , 2005, Cell.

[121]  G. Wider,et al.  Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis , 2005, Science.

[122]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[123]  Yigong Shi,et al.  Structure and mechanisms of the proteasome‐associated deubiquitinating enzyme USP14 , 2005, The EMBO journal.

[124]  Ivan Dikic,et al.  Ubiquitylation and cell signaling , 2005, The EMBO journal.

[125]  A. Ciechanover Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting* , 2005, Cell Death and Differentiation.

[126]  S. Bekker-Jensen,et al.  Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1 , 2005, The Journal of cell biology.

[127]  Ji-Hoon Lee,et al.  ATM Activation by DNA Double-Strand Breaks Through the Mre11-Rad50-Nbs1 Complex , 2005, Science.

[128]  R. Hay,et al.  SUMO: a history of modification. , 2005, Molecular cell.

[129]  Stephen P. Jackson,et al.  Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage , 2005, Nature.

[130]  René Bernards,et al.  The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. , 2005, Molecular cell.

[131]  A. D’Andrea,et al.  Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. , 2005, Blood.

[132]  Jiri Bartek,et al.  Cell-cycle checkpoints and cancer , 2004, Nature.

[133]  Jeremy M. Stark,et al.  Genetic Steps of Mammalian Homologous Repair with Distinct Mutagenic Consequences , 2004, Molecular and Cellular Biology.

[134]  Michio Kawasuji,et al.  Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination , 2004, The EMBO journal.

[135]  Timothy Cardozo,et al.  The SCF ubiquitin ligase: insights into a molecular machine , 2004, Nature Reviews Molecular Cell Biology.

[136]  J. Bartek,et al.  Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. , 2004, DNA repair.

[137]  Robert T Abraham,et al.  PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways. , 2004, DNA repair.

[138]  M. Nussenzweig,et al.  53BP1 is required for class switch recombination , 2004, The Journal of cell biology.

[139]  A. Lehmann,et al.  Ubiquitination of PCNA and the Polymerase Switch in Human Cells , 2004, Cell cycle.

[140]  A. Lehmann,et al.  Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. , 2004, Molecular cell.

[141]  D. Barford,et al.  Getting into position: the catalytic mechanisms of protein ubiquitylation. , 2004, The Biochemical journal.

[142]  E. Solomon,et al.  BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. , 2004, Human molecular genetics.

[143]  F. Alt,et al.  53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination , 2004, Nature Immunology.

[144]  P. Jeggo,et al.  ATM and DNA-PK Function Redundantly to Phosphorylate H2AX after Exposure to Ionizing Radiation , 2004, Cancer Research.

[145]  Aydin Haririnia,et al.  Solution Conformation of Lys63-linked Di-ubiquitin Chain Provides Clues to Functional Diversity of Polyubiquitin Signaling* , 2004, Journal of Biological Chemistry.

[146]  T. Ohta,et al.  Mass Spectrometric and Mutational Analyses Reveal Lys-6-linked Polyubiquitin Chains Catalyzed by BRCA1-BARD1 Ubiquitin Ligase* , 2004, Journal of Biological Chemistry.

[147]  Weidong Wang,et al.  FANCL Replaces BRCA1 as the Likely Ubiquitin Ligase Responsible for FANCD2 Monoubiquitination , 2004, Cell cycle.

[148]  Jun Qin,et al.  SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. , 2003, Genes & development.

[149]  C. Lilley,et al.  The Mre11 complex is required for ATM activation and the G2/M checkpoint , 2003, The EMBO journal.

[150]  Linda Hicke,et al.  Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. , 2003, Annual review of cell and developmental biology.

[151]  Michele Pagano,et al.  Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage , 2003, Nature.

[152]  P. P. Di Fiore,et al.  Distinct monoubiquitin signals in receptor endocytosis. , 2003, Trends in biochemical sciences.

[153]  R. Shiekhattar,et al.  Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. , 2003, Molecular cell.

[154]  Yair Andegeko,et al.  Requirement of the MRN complex for ATM activation by DNA damage , 2003, The EMBO journal.

[155]  Philipp Stelter,et al.  Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation , 2003, Nature.

[156]  Peter T Lansbury,et al.  Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. , 2003, Chemistry & biology.

[157]  Junjie Chen,et al.  Human Claspin Is Required for Replication Checkpoint Control* , 2003, Journal of Biological Chemistry.

[158]  I. Hoffmann,et al.  Phosphorylation at Serine 75 Is Required for UV-mediated Degradation of Human Cdc25A Phosphatase at the S-phase Checkpoint* , 2003, Journal of Biological Chemistry.

[159]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[160]  Yosef Yarden,et al.  Endocytosis of Receptor Tyrosine Kinases Is Driven by Monoubiquitylation, Not Polyubiquitylation* , 2003, Journal of Biological Chemistry.

[161]  E. Appella,et al.  Regulation of Human Cdc25A Stability by Serine 75 Phosphorylation Is Not Sufficient to Activate a S-phase Checkpoint , 2003, Cell cycle.

[162]  K. Vermeulen,et al.  The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer , 2003, Cell proliferation.

[163]  Junjie Chen,et al.  Mediator of DNA Damage Checkpoint Protein 1 Regulates BRCA1 Localization and Phosphorylation in DNA Damage Checkpoint Control* , 2003, The Journal of Biological Chemistry.

[164]  Y. Shiloh ATM and related protein kinases: safeguarding genome integrity , 2003, Nature Reviews Cancer.

[165]  J. Bartek,et al.  Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. , 2003, Cancer cell.

[166]  Stephen J. Elledge,et al.  MDC1 is a mediator of the mammalian DNA damage checkpoint , 2003, Nature.

[167]  A. D’Andrea,et al.  A novel diagnostic screen for defects in the Fanconi anemia pathway. , 2002, Blood.

[168]  D. Fushman,et al.  Structural properties of polyubiquitin chains in solution. , 2002, Journal of molecular biology.

[169]  S. Elledge,et al.  53BP1, a Mediator of the DNA Damage Checkpoint , 2002, Science.

[170]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[171]  P. Jeggo,et al.  Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest , 2002, Oncogene.

[172]  Lawrence C. Brody,et al.  BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage , 2002, Nature Genetics.

[173]  Michael M. Murphy,et al.  ATM Phosphorylates Histone H2AX in Response to DNA Double-strand Breaks* , 2001, The Journal of Biological Chemistry.

[174]  M. Tatham,et al.  Polymeric Chains of SUMO-2 and SUMO-3 Are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9* , 2001, The Journal of Biological Chemistry.

[175]  C. Hill,et al.  Defining polyubiquitin chain topology , 2001, Nature Structural Biology.

[176]  Hans Joenje,et al.  The emerging genetic and molecular basis of Fanconi anaemia , 2001, Nature Reviews Genetics.

[177]  Bo Xu,et al.  Involvement of Brca1 in S-Phase and G2-Phase Checkpoints after Ionizing Irradiation , 2001, Molecular and Cellular Biology.

[178]  N. Mailand,et al.  The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis , 2001, Nature.

[179]  D. Durocher,et al.  DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? , 2001, Current opinion in cell biology.

[180]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[181]  A. Kumagai,et al.  Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. , 2000, Molecular cell.

[182]  G. Dittmar,et al.  Cell Cycle–Regulated Modification of the Ribosome by a Variant Multiubiquitin Chain , 2000, Cell.

[183]  R. Bernards,et al.  Distinct Initiation and Maintenance Mechanisms Cooperate to Induce G1 Cell Cycle Arrest in Response to DNA Damage , 2000, Cell.

[184]  S. Jentsch,et al.  Two RING finger proteins mediate cooperation between ubiquitin‐conjugating enzymes in DNA repair , 2000, The EMBO journal.

[185]  M. Molinari,et al.  Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis , 2000, EMBO reports.

[186]  N. Mailand,et al.  Rapid destruction of human Cdc25A in response to DNA damage. , 2000, Science.

[187]  M. Kirschner,et al.  The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. , 2000, Genes & development.

[188]  Martin Rechsteiner,et al.  Recognition of the polyubiquitin proteolytic signal , 2000, The EMBO journal.

[189]  B. Koller,et al.  Brca1 controls homology-directed DNA repair. , 1999, Molecular cell.

[190]  N. Alon,et al.  Drug sensitivity spectra in Fanconi anemia lymphoblastoid cell lines of defined complementation groups. , 1999, Mutation research.

[191]  V. Marchesi,et al.  A mutant deubiquitinating enzyme (Ubp-M) associates with mitotic chromosomes and blocks cell division. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[192]  C. Pickart,et al.  Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Polyubiquitin Chains for DNA Repair , 1999, Cell.

[193]  M. Kirschner,et al.  Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. , 1998, Molecular cell.

[194]  E. Rogakou,et al.  DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139* , 1998, The Journal of Biological Chemistry.

[195]  I. Ota,et al.  A Proteolytic Pathway That Recognizes Ubiquitin as a Degradation Signal (*) , 1995, The Journal of Biological Chemistry.

[196]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.

[197]  A. Ciechanover,et al.  "Covalent affinity" purification of ubiquitin-activating enzyme. , 1982, The Journal of biological chemistry.

[198]  A. Haas,et al.  Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. , 1980, The Journal of biological chemistry.

[199]  A. Hershko,et al.  A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. , 1978, Biochemical and biophysical research communications.

[200]  N. Mailand,et al.  HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes , 2010, Nature Cell Biology.

[201]  A. Ciechanover Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. , 2010, Medicina.

[202]  R. Kanaar,et al.  Mechanisms of Dealing with DNA Damage-Induced Replication Problems , 2008, Cell Biochemistry and Biophysics.

[203]  W. Xiao,et al.  Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA , 2008, Cell Research.

[204]  Jinke Cheng,et al.  SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. , 2007, Cell.

[205]  C. Bustamante,et al.  Rapid spontaneous accessibility of nucleosomal DNA , 2005, Nature Structural &Molecular Biology.

[206]  Michele Pagano,et al.  Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. , 2003, Nature.

[207]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[208]  A. Taylor,et al.  Effects of ionizing radiation on cells from Fanconi's anemia patients. , 1985, Cancer research.