Algorithms for Combinatorial Optimization Problems

[1]  John E. Beasley,et al.  A tabu search algorithm for the single vehicle routing allocation problem , 2007, J. Oper. Res. Soc..

[2]  Egon Balas,et al.  On the Set-Covering Problem , 1972, Oper. Res..

[3]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[4]  P. Toth,et al.  An Integer Linear Programming based heuristic approach for the capacitated m-ring-star problem , 2011 .

[5]  Inmaculada Rodríguez Martín,et al.  The Ring Star Problem: Polyhedral analysis and exact algorithm , 2004, Networks.

[6]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[7]  Esther M. Arkin,et al.  Approximation Algorithms for the Geometric Covering Salesman Problem , 1994, Discret. Appl. Math..

[8]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[9]  Inmaculada Rodríguez Martín,et al.  Locating median cycles in networks , 2005, Eur. J. Oper. Res..

[10]  Mohamed Haouari,et al.  A probabilistic greedy search algorithm for combinatorial optimisation with application to the set covering problem , 2002, J. Oper. Res. Soc..

[11]  Matteo Fischetti,et al.  Algorithms for railway crew management , 1997, Math. Program..

[12]  Lawrence V. Snyder,et al.  A random-key genetic algorithm for the generalized traveling salesman problem , 2006, Eur. J. Oper. Res..

[13]  Jacques Renaud,et al.  An efficient composite heuristic for the symmetric generalized traveling salesman problem , 1998, Eur. J. Oper. Res..

[14]  Mauro Dell'Amico,et al.  The Capacitated m-Ring-Star Problem , 2007, Oper. Res..

[15]  Bruce L. Golden,et al.  Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem , 2005, Oper. Res. Lett..

[16]  Nenad Mladenovic,et al.  Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem , 2009, Eur. J. Oper. Res..

[17]  Paolo Toth,et al.  An electromagnetism metaheuristic for the unicost set covering problem , 2010, Eur. J. Oper. Res..

[18]  Paolo Toth,et al.  The Generalized Covering Salesman Problem , 2012, INFORMS J. Comput..

[19]  Gilbert Laporte,et al.  New Insertion and Postoptimization Procedures for the Traveling Salesman Problem , 1992, Oper. Res..

[20]  Sven Oliver Krumke,et al.  On the Minimum Label Spanning Tree Problem , 1998, Inf. Process. Lett..

[21]  Cid C. de Souza,et al.  Column Generation Algorithms for the Capacitated m-Ring-Star Problem , 2008, CTW.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[24]  Mostafa Zandieh,et al.  An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness , 2009, Expert Syst. Appl..

[25]  Toshihide Ibaraki,et al.  A 3-flip neighborhood local search for the set covering problem , 2006, Eur. J. Oper. Res..

[26]  Andrew C. Ho,et al.  Set covering algorithms using cutting planes, heuristics, and subgradient optimization: A computational study , 1980 .

[27]  Bruce L. Golden,et al.  Improved Heuristics for the Minimum Label Spanning Tree Problem , 2006, IEEE Transactions on Evolutionary Computation.

[28]  Ruay-Shiung Chang,et al.  The Minimum Labeling Spanning Trees , 1997, Inf. Process. Lett..

[29]  Bruce L. Golden,et al.  A one-parameter genetic algorithm for the minimum labeling spanning tree problem , 2005, IEEE Transactions on Evolutionary Computation.

[30]  Stefan Voß,et al.  Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem , 2005 .

[31]  John R Current,et al.  Multiobjective design of transportation networks , 1981 .

[32]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[33]  Majid Salari,et al.  Introduction to electromagnetism algorithm for the examination timetabling problem and comparison of it with other metaheuristics , 2006 .

[34]  Matteo Fischetti,et al.  Algorithms for the Set Covering Problem , 2000, Ann. Oper. Res..

[35]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[36]  Bert De Reyck,et al.  A hybrid scatter search/electromagnetism meta-heuristic for project scheduling , 2006, Eur. J. Oper. Res..

[37]  Michel Gendreau,et al.  The Covering Tour Problem , 1997, Oper. Res..

[38]  John R. Current,et al.  The Covering Salesman Problem , 1989, Transp. Sci..

[39]  Pei-Chann Chang,et al.  A Hybrid Electromagnetism-Like Algorithm for Single Machine Scheduling Problem , 2009, ICIC.

[40]  Horst A. Eiselt,et al.  Integer Programming and Network Models , 2000 .

[41]  Paolo Toth,et al.  A heuristic procedure for the Capacitated m-Ring-Star problem , 2010, Eur. J. Oper. Res..

[42]  Matteo Fischetti,et al.  A Heuristic Method for the Set Covering Problem , 1999, Oper. Res..

[43]  Reza Tavakkoli-Moghaddam,et al.  A hybridization of simulated annealing and electromagnetic-like mechanism for job shop problems with machine availability and sequence-dependent setup times to minimize total weighted tardiness , 2009, Soft Comput..

[44]  M. Yagiura,et al.  RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM , 2007 .

[45]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..

[46]  James A. Chisman,et al.  The clustered traveling salesman problem , 1975, Comput. Oper. Res..

[47]  Antonio Mauttone,et al.  A hybrid metaheuristic algorithm to solve the Capacitated m -Ring Star Problem , 2007 .

[48]  Guoliang Chen,et al.  A note on the minimum label spanning tree , 2002, Inf. Process. Lett..

[49]  Thomas Stützle,et al.  A Comparison Between ACO Algorithms for the Set Covering Problem , 2004, ANTS Workshop.

[50]  Gerhard J. Woeginger,et al.  Local search for the minimum label spanning tree problem with bounded color classes , 2003, Oper. Res. Lett..

[51]  Paolo Toth,et al.  The VIII Metaheuristics International Conference id-1 Variable Neighborhood Search for the Cost Constrained Minimum Label Spanning Tree and Label Constrained Minimum Spanning Tree Problems , 2009 .

[52]  Reza Tavakkoli-Moghaddam,et al.  A Discrete Binary Version of the Electromagnetism-Like Heuristic for Solving Traveling Salesman Problem , 2008, ICIC.

[53]  R. Prim Shortest connection networks and some generalizations , 1957 .

[54]  J. Beasley An algorithm for set covering problem , 1987 .

[55]  J. Dongarra Performance of various computers using standard linear equations software , 1990, CARN.

[56]  Bruce L. Golden,et al.  The Label-Constrained Minimum Spanning Tree Problem , 2008 .

[57]  Joaquín Bautista,et al.  A GRASP algorithm to solve the unicost set covering problem , 2007, Comput. Oper. Res..

[58]  Bruce L. Golden,et al.  The Generalized Traveling Salesman Problem: A New Genetic Algorithm Approach , 2007 .

[59]  Marco Caserta,et al.  Tabu Search-Based Metaheuristic Algorithm for Large-scale Set Covering Problems , 2007, Metaheuristics.

[60]  Mario Vanhoucke,et al.  An electromagnetic meta-heuristic for the nurse scheduling problem , 2007, J. Heuristics.

[61]  Fischetti Caprara,et al.  An Indirect Genetic Algorithm for Set Covering Problems , 2002 .

[62]  Guanghui Lan,et al.  An effective and simple heuristic for the set covering problem , 2007, Eur. J. Oper. Res..

[63]  K. Al-Sultan,et al.  A Genetic Algorithm for the Set Covering Problem , 1996 .

[64]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.

[65]  Mauricio Solar,et al.  A parallel genetic algorithm to solve the set-covering problem , 2002, Comput. Oper. Res..

[66]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[67]  Hamid Davoudpour,et al.  Solving Flow Shop Sequencing Problem for Deteriorating Jobs by Using Electro Magnetic Algorithm , 2008 .

[68]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[69]  Kung-Jiuan Yang,et al.  A Revised EM-Like Algorithm + K-OPT Method for Solving the Traveling Salesman Problem , 2006, First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06).

[70]  Matteo Fischetti,et al.  A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem , 1997, Oper. Res..