A Possibilistic Argumentation Decision Making Framework with Default Reasoning

In this paper, we introduce a possibilistic argumentation-based decision making framework which is able to capture uncertain information and exceptions/defaults. In particular, we define the concept of a possibilistic decision making framework which is based on a possibilistic default theory, a set of decisions and a set of prioritized goals. This set of goals captures user preferences related to the achievement of a particular state in a decision making problem. By considering the inference of the possibilistic well-founded semantics, the concept of argument with respect to a decision is defined. This argument captures the feasibility of reaching a goal by applying a decision in a given context. The inference in the argumentation decision making framework is based on basic argumentation semantics. Since some basic argumentation semantics can infer more than one possible scenario of a possibilistic decision making problem, we define some criteria for selecting potential solutions of the problem.

[1]  Claudette Cayrol,et al.  Inferring from Inconsistency in Preference-Based Argumentation Frameworks , 2002, Journal of Automated Reasoning.

[2]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[3]  Gerhard Brewka,et al.  Answer Sets and Qualitative Decision Making , 2005, Synthese.

[4]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[5]  Chitta Baral,et al.  Knowledge Representation, Reasoning and Declarative Problem Solving , 2003 .

[6]  Francesca Toni,et al.  Argumentative agents , 2010, Proceedings of the International Multiconference on Computer Science and Information Technology.

[7]  Blai Bonet,et al.  Arguing for Decisions: A Qualitative Model of Decision Making , 1996, UAI.

[8]  John Fox,et al.  Argumentation-Based Inference and Decision Making--A Medical Perspective , 2007, IEEE Intelligent Systems.

[9]  Ulises Cortés,et al.  Supporting decision making in urban wastewater systems using a knowledge-based approach , 2011, Environ. Model. Softw..

[10]  Juan Carlos Nieves,et al.  Possibilistic Well-Founded Semantics , 2009, MICAI.

[11]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[12]  John Fox,et al.  Arguing about beliefs and actions , 1998, Applications of Uncertainty Formalisms.

[13]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[14]  Henry Prakken,et al.  Logics for Defeasible Argumentation , 2001 .

[15]  Pietro Baroni,et al.  SCC-recursiveness: a general schema for argumentation semantics , 2005, Artif. Intell..

[16]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[17]  Ulises Cortés,et al.  Reasoning about Actions for the Management of Urban Wastewater Systems using a Causal Logic , 2010 .

[18]  Jürgen Dix,et al.  A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties , 1995, Fundam. Informaticae.

[19]  Juan Carlos Nieves,et al.  A Schema for Generating Relevant Logic Programming Semantics and its Applications in Argumentation Theory , 2011, Fundam. Informaticae.

[20]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[21]  John Fox,et al.  A LOGIC OF ARGUMENTATION FOR REASONING UNDER UNCERTAINTY , 1995, Comput. Intell..

[22]  Michael Wooldridge,et al.  Reasoning about rational agents , 2000, Intelligent robots and autonomous agents.

[23]  Guillermo Ricardo Simari,et al.  Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification , 2008, Int. J. Approx. Reason..

[24]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[25]  Claudio Ulises Cortés García,et al.  Reasoning about actions for the management of urban wastewater systems using a causal logic , 2010 .

[26]  Igor Stéphan,et al.  Possibilistic uncertainty handling for answer set programming , 2006, Annals of Mathematics and Artificial Intelligence.

[27]  Henri Prade,et al.  Using arguments for making and explaining decisions , 2009, Artif. Intell..

[28]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[29]  H. Prade,et al.  Possibilistic logic , 1994 .

[30]  Jürgen Dix,et al.  A general theory of confluent rewriting systems for logic programming and its applications , 2001, Ann. Pure Appl. Log..

[31]  Jürgen Dix,et al.  Transformation-based bottom-up computation of the well-founded model , 1996, Theory and Practice of Logic Programming.

[32]  Didier Dubois,et al.  Possibility Theory as a Basis for Qualitative Decision Theory , 1995, IJCAI.

[33]  Valeria Carofiglio Modelling Argumentation with Belief Networks , 2004 .

[34]  Teresa Alsinet,et al.  A Complete Calcultis for Possibilistic Logic Programming with Fuzzy Propositional Variables , 2000, UAI.

[35]  Jürgen Dix,et al.  A Classification Theory of Semantics of Normal Logic Programs: II. Weak Properties , 1995, Fundam. Informaticae.

[36]  Guillermo Ricardo Simari,et al.  A logic programming framework for possibilistic argumentation: Formalization and logical properties , 2008, Fuzzy Sets Syst..

[37]  V. S. Costa,et al.  Theory and Practice of Logic Programming , 2010 .

[38]  Phan Minh Dung,et al.  Towards argumentation-based contract negotiation , 2008, COMMA.