Information Content Extraction on Quad Trees for Active Spatial Image Clustering

Spatial Mining differs from regular data mining in parallel with the difference in spatial and non-spatial data. The attributes of a spatial object is influenced by the attributes of the spatial object and moreover by the spatial location. In this paper, we propose a new algorithm for spatial mining by applying an image extraction method on hierarchical Quad tree spatial data structure. Homogeneity of the grid is the entropy measure which decides the further subdivision of the quadrant. Finally, the algorithm proceeds by applying low level image extraction on domain dense nodes of the quad tree.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Emanuel Diamant,et al.  Searching for image information content, its discovery, extraction, and representation , 2005, J. Electronic Imaging.

[3]  Jiawei Han,et al.  CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..

[4]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[5]  A. Unnikrishnan,et al.  Recursive Decision Tree Induction Based on Homogeneousness for Data Clustering , 2008, 2008 International Conference on Cyberworlds.

[6]  Jiong Yang,et al.  STING+: an approach to active spatial data mining , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[7]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[8]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[9]  Sangkyum Kim,et al.  SpaRClus: Spatial Relationship Pattern-Based Hierarchial Clustering , 2008, SDM.

[10]  Hanan Samet,et al.  Hierarchical Spatial Data Structures , 1989, SSD.

[11]  Jun-Yi Shen,et al.  Grid-Based Clustering Algorithm Based on Intersecting Partition and Density Estimation , 2007, PAKDD Workshops.

[12]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[13]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[14]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[15]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[16]  Jiong Yang,et al.  An Approach to Active Spatial Data Mining Based on Statistical Information , 2000, IEEE Trans. Knowl. Data Eng..

[17]  Valentin Pupezescu,et al.  ADVANCES IN KNOWLEDGE DISCOVERY IN DATABASES , 2008 .

[18]  Ian Witten,et al.  Data Mining , 2000 .

[19]  Hans-Peter Kriegel,et al.  Knowledge Discovery in Spatial Databases , 1999, DAGM-Symposium.

[20]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .