A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO) has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO) is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.

[1]  Wanli Xiang,et al.  An Alternate Iterative Differential Evolution Algorithm for Parameter Identification of Chaotic Systems , 2015 .

[2]  Aiguo Song,et al.  EFFECT OF POSITIVE FEEDBACK WITH THRESHOLD CONTROL ON STOCHASTIC RESONANCE OF BI-STABLE SYSTEMS , 2012 .

[3]  Yu Liu,et al.  A New Bio-inspired Algorithm: Chicken Swarm Optimization , 2014, ICSI.

[4]  Mohammad Hassan Khooban,et al.  Adaptive fuzzy sliding mode control for synchronization of uncertain non-identical chaotic systems using bacterial foraging optimization , 2014, J. Intell. Fuzzy Syst..

[5]  Jack J Jiang,et al.  Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Monica Roman,et al.  Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation , 2015, BioMed research international.

[7]  Y. L. Chen,et al.  Combining Penalty Function with Modified Chicken Swarm Optimization for Constrained Optimization , 2015 .

[8]  Alfi Alireza 具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用 , 2011 .

[9]  Wenshan Hu,et al.  Synchronization of Hybrid Microgrids with Communication Latency , 2015 .

[10]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[11]  Jun Li,et al.  Parameter Estimation of a Class One-Dimensional Discrete Chaotic System , 2011 .

[12]  Taher Niknam,et al.  Speed control of electrical vehicles: a time-varying proportional–integral controller-based type-2 fuzzy logic , 2016 .

[13]  Alireza Alfi,et al.  PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems , 2011 .

[14]  Mohammad Hassan Khooban,et al.  The online parameter identification of chaotic behaviour in permanent magnet synchronous motor by Self-Adaptive Learning Bat-inspired algorithm , 2016 .

[15]  Thomas Hinze,et al.  Biochemical Frequency Control by Synchronisation of Coupled Repressilators: An In Silico Study of Modules for Circadian Clock Systems , 2011, Comput. Intell. Neurosci..

[16]  Aiguo Song,et al.  Enhancement of Spike Synchrony in Hindmarsh-Rose Neural Networks by Randomly Rewiring Connections , 2009 .

[17]  Haipeng Peng,et al.  Parameter estimation of dynamical systems via a chaotic ant swarm. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Petr Máca,et al.  Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm , 2015 .

[19]  Peng Chen,et al.  Wireless sensor network node localization algorithm based on chicken swarm optimization and multi-power mobile anchor , 2016 .

[20]  Her-Terng Yau,et al.  An FPGA-Based PID Controller Design for Chaos Synchronization by Evolutionary Programming , 2011 .

[21]  Mohammad Hassan Khooban,et al.  Optimal Type-2 Fuzzy Controller For HVAC Systems , 2014 .

[22]  Mohammad Reza Khalghani,et al.  An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode , 2016 .

[23]  Mohammad Hassan Khooban,et al.  Optimalni neizraziti reglutor tipa 2 za sustave za grijanje, ventilaciju i klimatizaciju , 2014 .

[24]  Jun Wang,et al.  An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation , 2016, Comput. Intell. Neurosci..

[25]  Ling Wang,et al.  Parameter estimation for chaotic systems by particle swarm optimization , 2007 .

[26]  Mohammad Reza Khalghani,et al.  Dynamic voltage restorer control using bi-objective optimisation to improve power quality's indices , 2014 .

[27]  Xiaojing Gao,et al.  Adaptive–impulsive synchronization and parameters estimation of chaotic systems with unknown parameters by using discontinuous drive signals , 2015 .

[28]  Adrian Sandu,et al.  A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems , 2010 .