Advances in the Dynallax Solid-State Dynamic Parallax Barrier Autostereoscopic Visualization Display System

A solid-state dynamic parallax barrier autostereoscopic display mitigates some of the restrictions present in static barrier systems such as fixed view-distance range, slow response to head movements, and fixed stereo operating mode. By dynamically varying barrier parameters in real time, viewers may move closer to the display and move faster laterally than with a static barrier system, and the display can switch between 3D and 2D modes by disabling the barrier on a per-pixel basis. Moreover, Dynallax can output four independent eye channels when two viewers are present, and both head-tracked viewers receive an independent pair of left-eye and right-eye perspective views based on their position in 3D space. The display device is constructed by using a dual-stacked LCD monitor where a dynamic barrier is rendered on the front display and a modulated virtual environment composed of two or four channels is rendered on the rear display. Dynallax was recently demonstrated in a small-scale head-tracked prototype system. This paper summarizes the concepts presented earlier, extends the discussion of various topics, and presents recent improvements to the system.

[1]  David C. Hemmy,et al.  Three-Dimensional Imaging Techniques , 1990 .

[2]  Neil A. Dodgson,et al.  50-in. time-multiplexed autostereoscopic display , 2000, Electronic Imaging.

[3]  Ken Perlin,et al.  An autostereoscopic display , 2000, SIGGRAPH.

[4]  Thomas A. DeFanti,et al.  Varrier autostereographic display , 2001, IS&T/SPIE Electronic Imaging.

[5]  Graham John Woodgate,et al.  Performance of a flat-panel display system convertible between 2D and autostereoscopic 3D modes , 2001, IS&T/SPIE Electronic Imaging.

[6]  Salvatore Paxia,et al.  Recent advances in the NYU autostereoscopic display , 2001, IS&T/SPIE Electronic Imaging.

[7]  A. Schmidt,et al.  Multi-viewpoint autostereoscopic displays from 4D-Vision , 2002 .

[8]  Lenny Lipton,et al.  New autostereoscopic display technology: the SynthaGram , 2002, IS&T/SPIE Electronic Imaging.

[9]  Thomas A. DeFanti,et al.  Real-time camera-based face detection using a modified LAMSTAR neural network system , 2003, IS&T/SPIE Electronic Imaging.

[10]  Takahisa Ando,et al.  Step barrier system multiview glassless 3D display , 2004, IS&T/SPIE Electronic Imaging.

[11]  Thomas A. DeFanti,et al.  The VarrierTM autostereoscopic virtual reality display , 2005, ACM Trans. Graph..

[12]  Thomas A. DeFanti,et al.  The Varrier TM autostereoscopic virtual reality display , 2005, SIGGRAPH 2005.

[13]  Andrew E. Johnson,et al.  Personal Varrier: Autostereoscopic virtual reality display for distributed scientific visualization , 2006, Future Gener. Comput. Syst..

[14]  K. Johnson,et al.  Fast-switching liquid-crystal-on-silicon microdisplay with framebuffer pixels and surface- mode optically compensated birefringence , 2006 .

[15]  Thomas A. DeFanti,et al.  A GPU Sub-pixel Algorithm for Autostereoscopic Virtual Reality , 2007, 2007 IEEE Virtual Reality Conference.

[16]  Thomas A. DeFanti,et al.  Evolution of the Varrier autostereoscopic VR display: 2001-2007 , 2007, Electronic Imaging.

[17]  Andrew E. Johnson,et al.  Dynallax: Solid State Dynamic Parallax Barrier Autostereoscopic VR Display , 2007, 2007 IEEE Virtual Reality Conference.

[18]  Jim X. Chen,et al.  OpenGL Shading Language , 2009 .