Two-photon excitation with finite pulses unlocks pure dephasing-induced degradation of entangled photons emitted by quantum dots

,

[1]  S. F. Covre da Silva,et al.  Beyond the Four-Level Model: Dark and Hot States in Quantum Dots Degrade Photonic Entanglement , 2022, Nano letters.

[2]  V. M. Axt,et al.  Phonon-induced transition between entangled and nonentangled photon emission in constantly driven quantum-dot–cavity systems , 2022, Physical Review B.

[3]  R. Trotta,et al.  Signatures of the Optical Stark Effect on Entangled Photon Pairs from Resonantly-Pumped Quantum Dots , 2022, 2212.07087.

[4]  C. Schimpf,et al.  Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation from Quantum Emitters. , 2022, Physical review letters.

[5]  R. Trotta,et al.  Quantum dots as potential sources of strongly entangled photons: Perspectives and challenges for applications in quantum networks , 2021 .

[6]  O. Schmidt,et al.  Maximally entangled and gigahertz-clocked on-demand photon pair source , 2020, 2010.11817.

[7]  S. F. Covre da Silva,et al.  Quantum cryptography with highly entangled photons from semiconductor quantum dots , 2020, Science Advances.

[8]  Fabio Sciarrino,et al.  Quantum key distribution with entangled photons generated on demand by a quantum dot , 2020, Science Advances.

[9]  D. Stefanatos,et al.  Rapid biexciton-state preparation in a quantum dot using on-off pulse sequences , 2020, 2012.03036.

[10]  V. Zwiller,et al.  Dephasing Free Photon Entanglement with a Quantum Dot , 2019, ACS Photonics.

[11]  Jian-Wei Pan,et al.  On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. , 2019, Physical review letters.

[12]  Jake Iles-Smith,et al.  A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability , 2019, Nature Nanotechnology.

[13]  T. Kuhn,et al.  Phonon-Induced Enhancement of Photon Entanglement in Quantum Dot-Cavity Systems. , 2019, Physical review letters.

[14]  T. Kuhn,et al.  From strong to weak temperature dependence of the two-photon entanglement resulting from the biexciton cascade inside a cavity , 2019, Physical Review B.

[15]  T. Kuhn,et al.  Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots , 2019, Advances in Physics: X.

[16]  H. Moon,et al.  Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble Via Collective Two-Photon Coherence , 2018, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[17]  V. M. Axt,et al.  Path-integral approach for nonequilibrium multitime correlation functions of open quantum systems coupled to Markovian and non-Markovian environments , 2018, Physical Review B.

[18]  R. Trotta,et al.  Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review , 2018, Journal of Optics.

[19]  S. F. Covre da Silva,et al.  Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. , 2018, Physical review letters.

[20]  S. Reitzenstein,et al.  Generation of maximally entangled states and coherent control in quantum dot microlenses , 2018, 1801.03376.

[21]  T. Kuhn,et al.  Comparison of different concurrences characterizing photon pairs generated in the biexciton cascade in quantum dots coupled to microcavities , 2017, Physical Review B.

[22]  T. Kuhn,et al.  Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry , 2017, 1712.01728.

[23]  A. Zeilinger Light for the quantum. Entangled photons and their applications: a very personal perspective , 2017 .

[24]  V. M. Axt,et al.  Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QED revealed by many-level real-time path-integral calculations , 2017, 1704.03347.

[25]  R. Rapaport,et al.  On-demand source of maximally entangled photon pairs using the biexciton-exciton radiative cascade , 2017, 1703.04380.

[26]  S. Schumacher,et al.  Polarization-entangled twin photons from two-photon quantum-dot emission , 2016, 1611.04328.

[27]  O. Schmidt,et al.  Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots , 2016, Nature Communications.

[28]  M. Versteegh,et al.  Semiconductor devices for entangled photon pair generation: a review , 2017, Reports on progress in physics. Physical Society.

[29]  Sandra C. Kuhn,et al.  Cavity assisted emission of single, paired and heralded photons from a single quantum dot device. , 2016, Optics express.

[30]  V. M. Axt,et al.  Path-integral description of combined Hamiltonian and non-Hamiltonian dynamics in quantum dissipative systems , 2016, 1607.00222.

[31]  F. Laussy,et al.  Enhanced two-photon emission from a dressed biexciton , 2015, 1506.05050.

[32]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[33]  O. Schmidt,et al.  Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. , 2014, Nano letters.

[34]  K. Jöns,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, Nature Photonics.

[35]  E. D. Valle Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED effects and spectral filtering , 2012, 1210.5272.

[36]  S. Schumacher,et al.  Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting. , 2012, Optics express.

[37]  A J Shields,et al.  Indistinguishable entangled photons generated by a light-emitting diode. , 2012, Physical review letters.

[38]  Mihail D. Croitoru,et al.  Influence of the pulse shape and the dot size on the decay and reappearance of Rabi rotations in laser driven quantum dots , 2011 .

[39]  A. Knorr,et al.  Analytical solution of the quantum-state tomography of the biexciton cascade in semiconductor quantum dots: Pure dephasing does not affect entanglement , 2011 .

[40]  Mihail D. Croitoru,et al.  Real-time path integrals for quantum dots: Quantum dissipative dynamics with superohmic environment coupling , 2011 .

[41]  R. M. Stevenson,et al.  Electric-field-induced coherent coupling of the exciton states in a single quantum dot , 2010, 1203.5909.

[42]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[43]  John Lawall,et al.  Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. , 2009, Physical review letters.

[44]  D. Ritchie,et al.  Evolution of entanglement between distinguishable light states. , 2008, Physical review letters.

[45]  Keiichi Edamatsu,et al.  Entangled Photons: Generation, Observation, and Characterization , 2007 .

[46]  O. Schmidt,et al.  Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K , 2007 .

[47]  D. Ritchie,et al.  Coherence of an entangled exciton-photon state. , 2007, Physical review letters.

[48]  F. Troiani,et al.  Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay , 2006, cond-mat/0606275.

[49]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[50]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[51]  F. Rossi,et al.  Pure dephasing and phonon dynamics in GaAs- and GaN-based quantum dot structures : Interplay between material parameters and geometry , 2005 .

[52]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[53]  T. Kuhn,et al.  Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots , 2002 .

[54]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[55]  L. Marsal,et al.  Acoustic phonon broadening mechanism in single quantum dot emission , 2001 .

[56]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[57]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[58]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[59]  Charles H. Bennett,et al.  Quantum information and computation , 1995, Nature.

[60]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[61]  N. Makri,et al.  TENSOR PROPAGATOR FOR ITERATIVE QUANTUM TIME EVOLUTION OF REDUCED DENSITY MATRICES. I: THEORY , 1995 .

[62]  N. Makri,et al.  Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology , 1995 .

[63]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[64]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .