Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are Better
暂无分享,去创建一个
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[3] S. Adler. Over-relaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions , 1981 .
[4] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[5] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[6] Jun S. Liu. Peskun's theorem and a modified discrete-state Gibbs sampler , 1996 .
[7] Paul Gustafson,et al. A guided walk Metropolis algorithm , 1998, Stat. Comput..
[8] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[9] Radford M. Neal,et al. Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation , 1995, Learning in Graphical Models.
[10] C. Geyer. On Non-reversible Markov Chains , 2000 .
[11] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[12] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[13] Djc MacKay,et al. Slice sampling - Discussion , 2003 .
[14] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[15] B. Nordstrom. FINITE MARKOV CHAINS , 2005 .