Theoretical investigation on two-dimensional non-traditional carbon materials employing three-membered ring and four-membered ring as building blocks

[1]  Fuzhi Huang,et al.  Photovoltaic performance and the energy landscape of CH3NH3PbI3. , 2015, Physical chemistry chemical physics : PCCP.

[2]  S. Pal Versatile photoluminescence from graphene and its derivatives , 2015 .

[3]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[4]  Y. Kawazoe,et al.  Penta-graphene: A new carbon allotrope , 2015, Proceedings of the National Academy of Sciences.

[5]  X. Zeng,et al.  Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. , 2015, Angewandte Chemie.

[6]  Zhongfang Chen,et al.  Be(2)C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. , 2014, Angewandte Chemie.

[7]  Hui Yan,et al.  Two dimensional Dirac carbon allotropes from graphene. , 2014, Nanoscale.

[8]  Mingwen Zhao,et al.  Two-dimensional carbon topological insulators superior to graphene , 2013, Scientific Reports.

[9]  S. Okada,et al.  Two-Dimensional sp2 Carbon Network of Fused Pentagons: All Carbon Ferromagnetic Sheet , 2013 .

[10]  P. Lambin,et al.  Theoretical Raman fingerprints ofα-,β-, andγ-graphyne , 2013, 1308.3611.

[11]  Weiqiao Deng,et al.  A 3N rule for the electronic properties of doped graphene , 2013, Nanotechnology.

[12]  Si‐Dian Li,et al.  Two-dimensional carbon allotropes from graphene to graphyne , 2013 .

[13]  Xin-Quan Wang,et al.  Prediction of a new two-dimensional metallic carbon allotrope. , 2013, Physical chemistry chemical physics : PCCP.

[14]  Yu Liu,et al.  Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. , 2013, Physical review letters.

[15]  Ji Feng,et al.  Two-dimensional carbon allotrope with strong electronic anisotropy , 2012, 1211.4680.

[16]  Jijun Zhao,et al.  Semiconducting allotrope of graphene , 2012, Nanotechnology.

[17]  D. Galvão,et al.  Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene , 2012, 1205.6838.

[18]  Francesc Viñes,et al.  Competition for graphene: graphynes with direction-dependent Dirac cones. , 2012, Physical review letters.

[19]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[20]  A. Enyashin,et al.  Graphene allotropes , 2011 .

[21]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[22]  Qiang Sun,et al.  Electronic structures and bonding of graphyne sheet and its BN analog. , 2011, The Journal of chemical physics.

[23]  Zhigang Shuai,et al.  Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. , 2011, ACS nano.

[24]  I. Tanaka,et al.  Phonon-phonon interactions in transition metals , 2011, 1103.0137.

[25]  Brandon W. Whitman,et al.  Electronic properties of the biphenylene sheet and its one-dimensional derivatives. , 2010, ACS nano.

[26]  Daoben Zhu,et al.  Architecture of graphdiyne nanoscale films. , 2010, Chemical communications.

[27]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[28]  A. Mahmood,et al.  Production, properties and potential of graphene , 2010, 1002.0370.

[29]  F. Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[30]  A. Govindaraj,et al.  Graphene: the new two-dimensional nanomaterial. , 2009, Angewandte Chemie.

[31]  J. Shan,et al.  Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. , 2009, Physical review letters.

[32]  N. M. R. Peres,et al.  Tight-binding approach to uniaxial strain in graphene , 2008, 0811.4396.

[33]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[34]  Jia-An Yan,et al.  Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory , 2008, 0901.3093.

[35]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[36]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[37]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[38]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[39]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[40]  M. Rooks,et al.  Graphene nano-ribbon electronics , 2007, cond-mat/0701599.

[41]  Sanjay K. Banerjee,et al.  Ab initio theory of gate induced gaps in graphene bilayers , 2006, cond-mat/0612236.

[42]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[43]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[44]  E. McCann Interlayer asymmetry gap in the electronic band structure of bilayer graphene , 2006, cond-mat/0608221.

[45]  P. Barone,et al.  Electronic and elastic properties of two-dimensional carbon planes , 2006 .

[46]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[47]  Shugo Suzuki,et al.  Optimized geometries and electronic structures of graphyne and its family , 1998 .

[48]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  Benedict,et al.  Prediction of a pure-carbon planar covalent metal. , 1996, Physical review. B, Condensed matter.

[51]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[53]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[54]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[55]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[56]  Ray H. Baughman,et al.  Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms , 1987 .

[57]  Kenneth M. Merz,et al.  3,4-connected carbon nets: through-space and through-bond interactions in the solid state , 1987 .

[58]  E. Hückel,et al.  Quantentheoretische Beiträge zum Benzolproblem , 1931 .

[59]  Thomas C. Fitzgibbons,et al.  Benzene-derived carbon nanothreads. , 2015, Nature materials.

[60]  B. Wang,et al.  Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units , 2013 .