A Novel Approach to Trajectory Analysis Using String Matching and Clustering

Clustering of sub-trajectories is a very useful method to extract important information from vast amounts of trajectory data. Existing trajectory clustering algorithms have focused on geometric properties and spatial features of trajectories and sub-trajectories. In contrast to the existing trajectory clustering algorithms, we propose a new framework to cluster sub-trajectories based on a combination of their spatial and non-spatial features. This algorithm combines techniques from grid based approaches, spatial geometry and string processing. First, we convert each trajectory into a representative sequence that captures the trajectory direction and location. We identify common sub-trajectories from all the sequences using a modified string matching algorithm. Then, we extract non-spatial features from the common sub-trajectories. Finally, we present a density based clustering algorithm to cluster the sub-trajectories. Experimental results show that our framework correctly discovers groups of similar sub-trajectories with their similar non-spatial features.

[1]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[2]  Yan Huang,et al.  A Framework for Mining Sequential Patterns from Spatio-Temporal Event Data Sets , 2008, IEEE Transactions on Knowledge and Data Engineering.

[3]  Beng Chin Ooi,et al.  Proceedings of the 2007 ACM SIGMOD international conference on Management of data , 2007, SIGMOD 2007.

[4]  Christoph F. Eick,et al.  Mining Spatial Trajectories Using Non-parametric Density Functions , 2011, MLDM.

[5]  Joachim Gudmundsson,et al.  Of motifs and goals: mining trajectory data , 2012, SIGSPATIAL/GIS.

[6]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[7]  Derya Birant,et al.  ST-DBSCAN: An algorithm for clustering spatial-temporal data , 2007, Data Knowl. Eng..

[8]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[9]  Anil M. Cheriyadat,et al.  Detecting Dominant Motions in Dense Crowds , 2008, IEEE Journal of Selected Topics in Signal Processing.

[10]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[11]  Dan Gusfield Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[12]  Petko Bakalov,et al.  On-line discovery of flock patterns in spatio-temporal data , 2009, GIS.

[13]  Jun-Wei Hsieh,et al.  Trajectory-based video retrieval by string matching , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[14]  Tetsuji Satoh,et al.  Shape-Based Similarity Query for Trajectory of Mobile Objects , 2003, Mobile Data Management.

[15]  Shashi Shekhar,et al.  Spatial Databases: A Tour , 2003 .