The Evolutionary History of Carbamoyltransferases: A Complex Set of Paralogous Genes Was Already Present in the Last Universal Common Ancestor

[1]  N. Glansdorff,et al.  Ornithine carbamoyltransferase from the extreme thermophile Thermus thermophilus--analysis of the gene and characterisation of the protein. , 1997, European journal of biochemistry.

[2]  N. Glansdorff,et al.  Isolation of the gene encoding Pyrococcus furiosus ornithine carbamoyltransferase and study of its expression profile in vivo and in vitro. , 1997, European journal of biochemistry.

[3]  R. Cunin,et al.  Aspartate transcarbamylase from the deep-sea hyperthermophilic archaeon Pyrococcus abyssi: genetic organization, structure, and expression in Escherichia coli , 1997, Journal of bacteriology.

[4]  N. Glansdorff,et al.  Structure and expression of a pyrimidine gene cluster from the extreme thermophile Thermus strain ZO5 , 1997, Journal of bacteriology.

[5]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[6]  V. Villeret,et al.  Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[7]  L. Knodler,et al.  L-arginine transport and metabolism in Giardia intestinalis support its position as a transition between the prokaryotic and eukaryotic kingdoms. , 1995, Microbiology.

[8]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[9]  N. Glansdorff,et al.  Ammonia-dependent synthesis and metabolic channelling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus. , 1995, Microbiology.

[10]  W. Doolittle,et al.  Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Ruepp,et al.  Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution , 1995, Journal of bacteriology.

[12]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[13]  G. Erauso,et al.  The catalytic and regulatory properties of aspartate transcarbamoylase from Pyrococcus abyssi, a new deep-sea hyperthermophilic archaeobacterium , 1994 .

[14]  G. Gonnet,et al.  Exhaustive matching of the entire protein sequence database. , 1992, Science.

[15]  J. Wilson,et al.  The pathway of arginine catabolism in Giardia intestinalis. , 1992, Molecular and biochemical parasitology.

[16]  R. Stevens,et al.  Molecular structure of Bacillus subtilis aspartate transcarbamoylase at 3.0 A resolution. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Tricot,et al.  Converting catabolic ornithine carbamoyltransferase to an anabolic enzyme. , 1990, The Journal of biological chemistry.

[18]  N. Glansdorff,et al.  Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria , 1990 .

[19]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[22]  L. Kuo,et al.  Triggering of allostery in an enzyme by a point mutation: ornithine transcarbamoylase. , 1989, Science.

[23]  N. Glansdorff,et al.  On interspecies gene transfer: the case of the argF gene of Escherichia coli. , 1988, Annales de l'Institut Pasteur. Microbiology.

[24]  N. Glansdorff,et al.  Biosynthesis and Metabolism of Arginine in Bacteria , 1986, Microbiological reviews.

[25]  R. Davis Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. , 1986, Microbiological reviews.

[26]  H. K. Schachman,et al.  Effect of amino acid substitutions on the catalytic and regulatory properties of aspartate transcarbamoylase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[27]  V. Stalon,et al.  Immunological and structural relatedness of catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria , 1985, Journal of bacteriology.

[28]  W. Lipscomb,et al.  Structure of unligated aspartate carbamoyltransferase of Escherichia coli at 2.6-A resolution. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Gigot,et al.  Evolutionary divergence of genes for ornithine and aspartate carbamoyl-transferases--complete sequence and mode of regulation of the Escherichia coli argF gene; comparison of argF with argI and pyrB. , 1984, Nucleic acids research.

[30]  J. Wild,et al.  Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K-12. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Linstead,et al.  The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. , 1983, Molecular and biochemical parasitology.

[32]  J. L. Crawford,et al.  Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. , 1982, Journal of molecular biology.

[33]  Nicolas Glansdorff,et al.  The Dual Genetic Control of Ornithine Carbamoyltransferase in Escherichia coli , 1972 .

[34]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[35]  P. Forterre,et al.  The nature of the last universal ancestor and the root of the tree of life, still open questions. , 1992, Bio Systems.

[36]  J. Wild,et al.  Molecular evolution and genetic engineering of protein domains involving aspartate transcarbamoylase. , 1990, Annual review of microbiology.

[37]  T. Meyer,et al.  Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Jensen Enzyme recruitment in evolution of new function. , 1976, Annual review of microbiology.

[39]  N. Glansdorff,et al.  The dual genetic control of ornithine carbamolytransferase in Escherichia coli. A case of bacterial hybrid enzymes. , 1972, European journal of biochemistry.