Definition of an imaging spectrometer meeting the needs of UV solar physics

The study of the outer solar atmosphere requires combining imaging and spectroscopy in the UV lines formed in the high chromosphere, the transition region and the corona. We start from the science requirements and we define the instrumental specifications in terms of field-of-view (FOV), spatial, temporal and spectral resolution and bandpass. We propose two different all-reflection optical architectures based on interferometric techniques: Spatial Heterodyne Spectroscopy (SHS); and Imaging Transform Spectrometer (IFTS). We describe the different set-ups and compare the potential performances of the two types of solutions, and discuss their feasibility. We conclude that IFTS appears to be the best solution, meeting the needs of UV solar physics. However, we point out the many difficulties to be encountered, especially as far as metrology is concerned.

[1]  P. Mein,et al.  Multi-Channel Subtractive spectrograph and filament observations , 1977 .

[2]  J. Kauppinen,et al.  Performance limits of stationary Fourier spectrometers , 1991 .

[3]  Juan M. Fontenla,et al.  Energy Balance in the Solar Transition Region. II. Effects of Pressure and Energy Input on Hydrostatic Models , 1991 .

[4]  Peter Ade,et al.  The FIRST-SPIRE Spectrometer A Novel Imaging FTS for the Sub-Millimetre , 2000 .

[5]  W. Harris,et al.  Tunable, all-reflective spatial heterodyne spectrometer for broadband spectral line studies in the visible and near-ultraviolet. , 2009, Applied optics.

[6]  Kjetil Dohlen,et al.  FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter , 2000, Astronomical Telescopes + Instrumentation.

[7]  P. Connes,et al.  3-D Spectroscopy: The Historical and Logical viewpoint , 1995 .

[8]  Charles C. Kankelborg,et al.  First Results From the MOSES Rocket Flight , 2006 .

[9]  Frédéric Grandmont,et al.  Development of an imaging fourier transform spectrometer for astronomy , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  William H. Parkinson,et al.  A comparison of Imaging Fourier Transform with Grating Spectrometry for Tridimensional Spectroscopy , 1995 .

[11]  H. Ebadi,et al.  The Ly α and Ly β Profiles in Solar Prominences and Prominence Fine Structure , 2007, 0710.1433.

[12]  Anne Millard,et al.  Iftsuv : un spectromètre imageur à transformée de Fourier dans l'ultraviolet pour les prochaines missions spatiales solaires , 2005 .

[13]  Charles L. Bennett,et al.  Critical Comparison of 3-d Imaging Approaches for NGST , 1999 .

[14]  Eugene H. Avrett,et al.  Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun , 1981 .

[15]  John M Harlander,et al.  Broadband, high-resolution spatial heterodyne spectrometer. , 2008, Applied optics.

[16]  R. R. Conway,et al.  SHIMMER: a spatial heterodyne spectrometer for remote sensing of earth's middle atmosphere. , 2002, Applied optics.

[17]  Anne P. Thorne High resolution Fourier transform spectrometry in the visible and ultraviolet regions , 1998 .

[18]  Eric Prieto,et al.  New technological developments in integral field spectroscopy , 2008, Astronomical Telescopes + Instrumentation.

[19]  P. Mein,et al.  Solar Imaging Spectroscopy: Multichannel Subtractive Double Pass Instruments , 1995 .

[20]  C. Bennett Critical C ’ bmparison of 3-d Imaging approaches , 1999 .

[21]  D Joyeux,et al.  A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum. , 2009, The Review of scientific instruments.

[22]  Philip R. Goode,et al.  Minifilament Eruption on the Quiet Sun. I. Observations at Hα Central Line , 2000 .

[23]  K. Wilhelm,et al.  Hydrogen Lyman α Profiles of AN Active Region Filament Obtained with SUMER on SOHO , 2005 .

[24]  Bernard H. Foing,et al.  The SIMURIS interferometric mission: solar physics objectives and model payload (invited paper) , 1993 .

[25]  Ronald J. Oliversen,et al.  Applications of Spatial Heterodyne Spectroscopy for Remote Sensing of Diffuse UV-Vis Emission Line Sources in the Solar System , 2005 .

[26]  Mark C. Abrams,et al.  Fourier Transform Spectrometry , 2001 .

[27]  Cilia Damiani Etude en laboratoire des propriétés d’un spectromètre de Fourier hétérodyne imageur pour applications spatiales , 2009 .

[28]  Louise K. Harra,et al.  Material Outflows from Coronal Intensity “Dimming Regions” during Coronal Mass Ejection Onset , 2001 .

[29]  F. G. Eparvier,et al.  Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments , 2010 .