Time and frequency response of the conventional avalanche photodiode

An analytical expression for the time course of the average impulse response function for a conventional avalanche photodiode is derived. Delta-function absorption of a single photocarrier and single-carrier-initiated/single-carrier multiplication conditions are assumed. The result is obtained as a limiting case of a previously derived equation for the staircase avalanche photodiode. The initial exponential growth of the curves is shown to represent electron and hole contributions arising from multiplication in the avalanche region whereas the subsequent exponential decay arises from residual holes transiting backward across the multiplication region. The associated frequency response function is obtained by Fourier transformation. The analytical results are shown to be in good accord with average impulse response functions obtained by Riad and Hayes by means of simulation from the transport equations. The results should also apply to the channeling avalanche photodiode and to related structures in which the carriers are spatially separated and the multiplication is essentially single-carrier like.

[1]  M. Teich,et al.  Poisson branching point processes , 1984 .

[2]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[3]  M. Teich,et al.  Counting distributions and error probabilities for optical receivers incorporating superlattice avalanche photodiodes , 1986, IEEE Transactions on Electron Devices.

[4]  Theory of the channeling avalanche photodiode , 1985, IEEE Transactions on Electron Devices.

[5]  F. Capasso The channeling avalanche photodiode: A novel ultra-low-noise interdigitated p-n junction detector , 1982, IEEE Transactions on Electron Devices.

[6]  Bahaa E. A. Saleh,et al.  Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes , 1986 .

[7]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[8]  G. Lucovsky,et al.  The frequency response of avalanching photodiodes , 1966 .

[9]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[10]  Federico Capasso,et al.  New avalanche multiplication phenomenon in quantum well superlattices: Evidence of impact ionization across the band‐edge discontinuity , 1986 .

[11]  Takao Kaneda,et al.  Avalanche buildup time of silicon reach‐through photodiodes , 1976 .

[12]  A. Johnston,et al.  Temporal and frequency response of avalanche photodiodes from noise measurements. , 1980, Applied optics.

[13]  On the time dependency of the avalanche process in semiconductors , 1975 .

[14]  N. Tabatabaie,et al.  III-V compound semiconductor devices: Optical detectors , 1984, IEEE Transactions on Electron Devices.

[15]  Measurements of the statistics of excess noise in separate absorption, grading and multiplication (SAGM) avalanche photodiodes , 1984 .

[16]  S. Personick New results on avalanche multiplication statistics with applications to optical detection , 1971 .

[17]  I. M. Naqvi,et al.  Effects of time dependence of multiplication process on avalanche noise , 1973 .

[18]  B.E.A. Saleh,et al.  Noise properties and time response of the staircase avalanche photodiode , 1985, IEEE Transactions on Electron Devices.

[19]  K. Brennan Theory of the GaInAs/AlInAs-doped quantum well APD: A new low-noise solid-state photodetector for lightwave communication systems , 1986, IEEE Transactions on Electron Devices.

[20]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[21]  Karl Hess,et al.  Impact ionization across the conduction‐band‐edge discontinuity of quantum‐well heterostructures , 1986 .

[22]  S. Rakshit,et al.  Frequency responses of graded-bandgap low-noise avalanche photodiodes , 1985, IEEE Transactions on Electron Devices.

[23]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[24]  Stewart D. Personick,et al.  Fiber optics , 1985 .

[25]  W. T. Read,et al.  A proposed high-frequency, negative-resistance diode , 1958 .

[26]  P. Bhattacharya,et al.  Electron and hole impact ionization coefficients in GaAs‐AlxGa1−xAs superlattices , 1985 .

[27]  F. Capasso,et al.  The graded bandgap multilayer avalanche photodiode: A new low-noise detector , 1982, IEEE Electron Device Letters.

[28]  R. J. McIntyre,et al.  Recent developments in silicon avalanche photodiodes , 1985 .

[29]  H. W. Ruegg,et al.  An optimized avalanche photodiode , 1967 .

[30]  Amnon Yariv,et al.  Single-carrier-type dominated impact ionisation in multilayer structures , 1982 .

[31]  New high speed long wavelength Al0.48In0.52As/Ga0.47In0.53As multiquantum well avalanche photodiodes , 1985, 1985 International Electron Devices Meeting.

[32]  W. Wiegmann,et al.  Time Dependence of Avalanche Processes in Silicon , 1967 .

[33]  Amnon Yariv,et al.  A new infrared detector using electron emission from multiple quantum wells , 1983 .

[34]  R. E. Hayes,et al.  Simulation studies in both the frequency and time domains of InGaAsP-InP avalanche photodetectors , 1980, IEEE Transactions on Electron Devices.

[35]  S. Personick Statistics of a general class of avalanche detectors with applications to optical communication , 1971 .

[36]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .

[37]  Emanuel Parzen,et al.  Stochastic Processes , 1962 .

[38]  K. Brennan Theory of electron and hole impact ionization in quantum well and staircase superlattice avalanche photodiode structures , 1985, IEEE Transactions on Electron Devices.

[39]  J. Conradi,et al.  The distribution of gains in uniformly multiplying avalanche photodiodes: Experimental , 1972 .

[40]  R. B. Emmons,et al.  Avalanche photodiode frequency response , 1967 .