Numerical evaluation of complex logarithms in the Cox–Ingersoll–Ross model
暂无分享,去创建一个
[1] Mark H. A. Davis. Mathematics of Financial Markets , 2001 .
[2] Artur Sepp,et al. Pricing European-Style Options under Jump Diffusion Processes with Stochastic Volatility: Applications of Fourier Transform , 2003, Acta et Commentationes Universitatis Tartuensis de Mathematica.
[3] D. Madan,et al. Spanning and Derivative-Security Valuation , 2000 .
[4] Robert J. Elliott,et al. Mathematics of Financial Markets , 1999 .
[5] Roger Lee. Option Pricing by Transform Methods: Extensions, Unification, and Error Control , 2004 .
[6] Tübinger Diskussionsbeiträge. Stochastic volatility with an Ornstein-Uhlenbeck process: An extension , 2014 .
[7] Kyriakos Chourdakis. Option Pricing Using the Fractional FFT , 2004 .
[8] Damiano Brigo,et al. Counterparty Risk for Credit Default Swaps: Impact of Spread Volatility and Default Correlation , 2008 .
[9] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[10] W. Gander,et al. Adaptive Quadrature—Revisited , 2000 .
[11] T. Alderweireld,et al. A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] Christian Kahl,et al. Not-so-complex logarithms in the Heston model , 2006 .