Frequency domain iterative learning control for direct-drive robots

This paper presents an Iterative Learning Control algorithm for direct-drive robots. The learning algorithm assumes linear dynamics, which is created using a nonlinear model-based compensator. The convergence criterion of the learning controller is derived in the frequency domain. Rules for designing the filters, used in the update law, are explained. The effectiveness of the algorithm is demonstrated in experiments on a spatial direct-drive robot. The root-mean-square values of the tracking errors in a demanding writing task are over 10 times smaller after just eight iterations of the learning algorithm, compared with the errors before learning.

[1]  Spyros G. Tzafestas,et al.  Concerning the primary and secondary objectives in robot task definition — the “learn from humans” principle , 2000 .

[2]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[3]  Spyros G. Tzafestas,et al.  The handwriting problem [man-machine motion analogy in robotics] , 2003, IEEE Robotics Autom. Mag..

[4]  Dragan Kostic,et al.  Illustrating man-machine motion analogy in robotics - The handwriting problem , 2003 .

[5]  B. de Jager,et al.  RRR-robot design: basic outlines, servo sizing, and control , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[6]  Toshiharu Sugie,et al.  Iterative learning control for robot manipulators using the finite dimensional input subspace , 2002, IEEE Trans. Robotics Autom..

[7]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[8]  B. de Jager,et al.  Experimentally supported control design for a direct drive robot , 2002, Proceedings of the International Conference on Control Applications.

[9]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[10]  Maarten Steinbuch,et al.  Closed-form kinematic and dynamic models of an industrial-like RRR robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[11]  Alessandro De Luca,et al.  A frequency-domain approach to learning control: implementation for a robot manipulator , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[12]  Luca Maria Gambardella,et al.  On the iterative learning control theory for robotic manipulators , 1988, IEEE J. Robotics Autom..

[13]  Masayoshi Tomizuka,et al.  Zero Phase Error Tracking Algorithm for Digital Control , 1987 .

[14]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[15]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[16]  Suguru Arimoto,et al.  Control Theory of Nonlinear Mechanical Systems , 1996 .

[17]  Suguru Arimoto,et al.  Realization of robot motion based on a learning method , 1988, IEEE Trans. Syst. Man Cybern..

[18]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[19]  B. De Jager,et al.  An experimental facility for nonlinear robot control , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).