Finite element error analysis for a system coupling surface evolution to diffusion on the surface

We consider a numerical scheme for the approximation of a system that couples the evolution of a two–dimensional hypersurface to a reaction–diffusion equation on the surface. The surfaces are assumed to be graphs and evolve according to forced mean curvature flow. The method uses continuous, piecewise linear finite elements in space and a backward Euler scheme in time. Assuming the existence of a smooth solution we prove optimal error bounds both in L ∞ ( L 2 ) and in L 2 ( H 1 ). We present several numerical experiments that confirm our theoretical findings and apply the method in order to simulate diffusion induced grain boundary motion.

[1]  Vanessa Styles,et al.  Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction–diffusion equation on the curve , 2020, Numerical Methods for Partial Differential Equations.

[2]  Buyang Li,et al.  A convergent evolving finite element algorithm for mean curvature flow of closed surfaces , 2018, Numerische Mathematik.

[3]  Balázs Kovács,et al.  Linearly implicit full discretization of surface evolution , 2017, Numerische Mathematik.

[4]  Buyang Li,et al.  Convergence of finite elements on an evolving surface driven by diffusion on the surface , 2016, Numerische Mathematik.

[5]  John W. Barrett,et al.  Numerical Analysis for a System Coupling Curve Evolution to Reaction Diffusion on the Curve , 2016, SIAM J. Numer. Anal..

[6]  Paola Pozzi,et al.  Curve shortening flow coupled to lateral diffusion , 2015, Numerische Mathematik.

[7]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[8]  Gerhard Dziuk,et al.  Error analysis of a finite element method for the Willmore flow of graphs , 2006 .

[9]  Charles M. Elliott,et al.  Numerical diffusion-induced grain boundary motion , 2001 .

[10]  Charles M. Elliott,et al.  A free-boundary model for diffusion-induced grain boundary motion , 2001 .

[11]  Gerhard Dziuk,et al.  Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs , 2000 .

[12]  Gerhard Dziuk,et al.  Convergence of a finite element method for non-parametric mean curvature flow , 1995 .

[13]  C. Lubich,et al.  A convergent algorithm for forced mean curvature flow driven by diffusion on the surface , 2020 .

[14]  Rolf Rannacher,et al.  Finite element methods for nonlinear elliptic systems of second order , 1980 .

[15]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .