A robust machine learning algorithm to search for continuous gravitational waves

Many continuous gravitational wave searches are affected by instrumental spectral lines that could be confused with a continuous astrophysical signal. Several techniques have been developed to limit the effect of these lines by penalizing signals that appear in only a single detector. We have developed a general method, using a convolutional neural network, to reduce the impact of instrumental artifacts on searches that use the SOAP algorithm Bayley et al. [Phys. Rev. D 100, 023006 (2019)]. The method can identify features in corresponding frequency bands of each detector and classify these bands as containing a signal, an instrumental line, or noise. We tested the method against four different datasets: Gaussian noise with time gaps, data from the final run of Initial LIGO (S6) with signals added, the reference S6 mock data challenge dataset Walsh et al. [Phys. Rev. D 94, 124010 (2016)] and signals injected into data from the second advanced LIGO observing run (O2). Using the S6 mock data challenge dataset and at a 1% false alarm probability we showed that at 95% efficiency a fully automated SOAP search has a sensitivity corresponding to a coherent signal-to-noise ratio of 110, equivalent to a sensitivity depth of $10\text{ }\text{ }{\mathrm{Hz}}^{\ensuremath{-}1/2}$, making this automated search competitive with other searches requiring significantly more computing resources and human intervention.

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  Elena Cuoco,et al.  Core-Collapse supernova gravitational-wave search and deep learning classification , 2020, Mach. Learn. Sci. Technol..

[3]  C. Messenger,et al.  Detection and classification of supernova gravitational wave signals: A deep learning approach , 2019, Physical Review D.

[4]  M. Bejger,et al.  Convolutional neural network classifier for the output of the time-domain F -statistic all-sky search for continuous gravitational waves , 2019, Mach. Learn. Sci. Technol..

[5]  M. Bejger,et al.  Continuous Gravitational Waves from Neutron Stars: Current Status and Prospects , 2019, Universe.

[6]  Andrew L. Miller,et al.  How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search? , 2019, Physical Review D.

[7]  C. Messenger,et al.  Deep-learning continuous gravitational waves , 2019, Physical Review D.

[8]  B. Schölkopf,et al.  Convolutional neural networks: a magic bullet for gravitational-wave detection? , 2019, Physical Review D.

[9]  Graham Woan,et al.  Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals , 2019, Physical Review D.

[10]  M. S. Shahriar,et al.  All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data , 2019 .

[11]  C. Palomba,et al.  New method to observe gravitational waves emitted by core collapse supernovae , 2018, Physical Review D.

[12]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[13]  J. R. Palamos,et al.  Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO , 2018, 1801.07204.

[14]  Hunter Gabbard,et al.  Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. , 2017, Physical review letters.

[15]  K. Riles,et al.  Recent searches for continuous gravitational waves , 2017, 1712.05897.

[16]  Daniel George,et al.  Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.

[17]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[18]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[19]  Sylvia J. Zhu,et al.  A new veto for continuous gravitational wave searches , 2017, 1707.05268.

[20]  Adam A. Miller,et al.  Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project , 2016 .

[21]  Sinead Walsh,et al.  Comparison of methods for the detection of gravitational waves from unknown neutron stars , 2016, 1606.00660.

[22]  Paola Leaci,et al.  Methods to filter out spurious disturbances in continuous-wave searches from gravitational-wave detectors , 2015 .

[23]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[24]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[25]  Reinhard Prix,et al.  Postprocessing methods used in the search for continuous gravitational-wave signals from the galactic center , 2014, 1410.5997.

[26]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[27]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[28]  Reinhard Prix,et al.  Search for continuous gravitational waves: improving robustness versus instrumental artifacts , 2013, 1311.5738.

[29]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[30]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[31]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[32]  Shay B. Cohen,et al.  Advances in Neural Information Processing Systems 25 , 2012, NIPS 2012.

[33]  R. Prix Search for continuous gravitational waves: metric of the multi-detector F-statistic , 2006, gr-qc/0606088.

[34]  G. Woan,et al.  Bayesian estimation of pulsar parameters from gravitational wave data , 2005, gr-qc/0508096.

[35]  Daniel Enard,et al.  Status of VIRGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[36]  P. Brady,et al.  Searching for periodic sources with LIGO. II. Hierarchical searches , 1998, gr-qc/9812014.

[37]  B. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998, gr-qc/9804014.

[38]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[39]  Kazuhiko Yamamoto,et al.  Structured Document Image Analysis , 1992, Springer Berlin Heidelberg.

[40]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[41]  Thomas G. Dietterich,et al.  In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.

[42]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[43]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.