New Cocrystallization Method: Non-photochemical Laser-Induced Nucleation of a Cocrystal of Caffeine–Gallic Acid in Water

[1]  T. Sugiyama,et al.  Manipulation of nucleation and polymorphism by laser irradiation , 2022, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[2]  H. Höpfl,et al.  Tailoring Chlorthalidone Aqueous Solubility by Cocrystallization: Stability and Dissolution Behavior of a Novel Chlorthalidone-Caffeine Cocrystal , 2022, Pharmaceutics.

[3]  Z. Liao,et al.  A Metastable Amorphous Intermediate Is Responsible for Laser-Induced Nucleation of Glycine. , 2021, Journal of the American Chemical Society.

[4]  Jian-rong Wang,et al.  Enhancing the stability of active pharmaceutical ingredients by cocrystal strategy , 2022, CrystEngComm.

[5]  J. Gómez-Morales,et al.  Novel Polymorphic Cocrystals of the Non-Steroidal Anti-Inflammatory Drug Niflumic Acid: Expanding the Pharmaceutical Landscape , 2021, Pharmaceutics.

[6]  T. Sugiyama,et al.  L‐serine polymorphism controlled by optical trapping with high‐repetition‐rate femtosecond laser pulses , 2021, Journal of the Chinese Chemical Society.

[7]  S. Arnold,et al.  Dynamic Light Scattering Study of a Laser-Induced Phase-Separated Droplet of Aqueous Glycine. , 2021, The journal of physical chemistry. B.

[8]  M. R. Silva,et al.  Polymorphic Cocrystals of the Antimalarial Drug Pyrimethamine: Two Case Studies , 2021 .

[9]  Lan Jiang,et al.  Crystallization of Polymorphic Sulfathiazole Controlled by Femtosecond Laser-Induced Cavitation Bubbles , 2021 .

[10]  Ting Cai,et al.  Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications , 2021, Acta pharmaceutica Sinica. B.

[11]  K. Dua,et al.  Cocrystals of Apixaban with Improved Solubility and Permeability: Formulation, Physicochemical Characterization, Pharmacokinetic Evaluation, and Computational Studies. , 2021, Assay and drug development technologies.

[12]  W. You,et al.  Effect of Acidic Polymers on the Morphology of Laser-Induced Nucleation of Cesium Chloride , 2021, ACS omega.

[13]  E. Bartoszak-Adamska,et al.  Novel Purine Alkaloid Cocrystals with Trimesic and Hemimellitic Acids as Coformers: Synthetic Approach and Supramolecular Analysis , 2020, Crystal Growth & Design.

[14]  J. Gómez-Morales,et al.  Interconvertible Hydrochlorothiazide–Caffeine Multicomponent Pharmaceutical Materials: A Solvent Issue , 2020, Crystals.

[15]  C. Alvarez‐Lorenzo,et al.  Recurrent motifs in pharmaceutical cocrystals involving glycolic acid: X-ray characterization, Hirshfeld surface analysis and DFT calculations , 2020 .

[16]  A. Ogunlaja,et al.  Trimesic acid–Theophylline and Isopthalic acid–Caffeine Cocrystals: Synthesis, Characterization, Solubility, Molecular Docking, and Antimicrobial Activity , 2020 .

[17]  Changquan Calvin Sun,et al.  A Molecular Interpretation of the Compaction Performance and Mechanical Properties of Caffeine Cocrystals: A Polymorphic Study. , 2019, Molecular pharmaceutics.

[18]  K. Wynne,et al.  Using optical tweezing to control phase separation and nucleation near a liquid-liquid critical point. , 2019, Soft matter.

[19]  B. Sarma,et al.  Engineering a Remedy to Improve Phase Stability of Famotidine under Physiological pH Environments , 2019, Crystal Growth & Design.

[20]  P. Mehta,et al.  Synthesis of fisetin co-crystals with caffeine and nicotinamide using the cooling crystallization technique: biopharmaceutical studies , 2019, New Journal of Chemistry.

[21]  S. Mukherjee,et al.  Stability of co‐crystals of caffeine with gallic acid in presence of coformers , 2019, Journal of Food Process Engineering.

[22]  J. Baruah,et al.  Neutral, Zwitterion, Ionic Forms of 5‐Aminoisophthalic Acid in Cocrystals, Salts and Their Optical Properties , 2019, ChemistrySelect.

[23]  Lan Jiang,et al.  Polymorph-Controlled Crystallization of Acetaminophen through Femtosecond Laser Irradiation , 2019, Crystal Growth & Design.

[24]  Siqi Chen,et al.  Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation , 2019, Journal of Drug Delivery Science and Technology.

[25]  Yongtai Zhang,et al.  Naringenin Cocrystals Prepared by Solution Crystallization Method for Improving Bioavailability and Anti-hyperlipidemia Effects , 2019, AAPS PharmSciTech.

[26]  A. Alexander,et al.  Non-photochemical laser-induced nucleation. , 2019, The Journal of chemical physics.

[27]  K. Tsukamoto,et al.  Crystallization of aspirin form II by femtosecond laser irradiation , 2018, Applied Physics Express.

[28]  J. Ellena,et al.  Avoiding irreversible 5-fluorocytosine hydration via supramolecular synthesis of pharmaceutical cocrystals , 2018 .

[29]  J. Xue,et al.  Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[30]  A. Healy,et al.  Development and Characterization of Dapsone Cocrystal Prepared by Scalable Production Methods , 2018, AAPS PharmSciTech.

[31]  P. Chow,et al.  Cocrystals of zonisamide: physicochemical characterization and sustained release solid forms , 2018 .

[32]  U. Baisch,et al.  Crystal water as the molecular glue for obtaining different co-crystal ratios: the case of gallic acid tris-caffeine hexahydrate , 2018, Acta crystallographica. Section E, Crystallographic communications.

[33]  K. Wynne,et al.  Control over phase separation and nucleation using a laser-tweezing potential , 2018, Nature Chemistry.

[34]  Hiroshi Masuhara,et al.  Rapid localized crystallization of lysozyme by laser trapping. , 2018, Physical chemistry chemical physics : PCCP.

[35]  Z. Ahmad,et al.  Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance , 2018, Drug development and industrial pharmacy.

[36]  S. Jayaraman,et al.  Thermodynamic modeling studies of aqueous solubility of caffeine, gallic acid and their cocrystal in the temperature range of 303 K–363 K , 2018 .

[37]  J. Pierna,et al.  Characterization and discrimination of phenolic compounds using Fourier transform Raman spectroscopy and chemometric tools , 2017, BASE.

[38]  D. Voinovich,et al.  Engineering Codrug Solid Forms: Mechanochemical Synthesis of an Indomethacin–Caffeine System , 2017 .

[39]  Yuda Prasetya Nugraha,et al.  Solubility improvement of epalrestat by layered structure formation via cocrystallization , 2017 .

[40]  Bingqing Zhu,et al.  Cocrystals of Baicalein with Higher Solubility and Enhanced Bioavailability , 2017 .

[41]  Andrei V Churakov,et al.  Drug‐drug cocrystals of antituberculous 4‐aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[42]  Hou Xiaolong,et al.  Enhancing Bioavailability of Dihydromyricetin through Inhibiting Precipitation of Soluble Cocrystals by a Crystallization Inhibitor , 2016 .

[43]  A. Ikni,et al.  Non-Photochemical Laser-Induced Nucleation of Sulfathiazole in a Water/Ethanol Mixture , 2016 .

[44]  Ivan Marziano,et al.  Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design , 2015, The Journal of pharmacy and pharmacology.

[45]  Masashi Yoshimura,et al.  Selective crystallization of the metastable phase of indomethacin at the interface of liquid/air bubble induced by femtosecond laser irradiation , 2015 .

[46]  Vanessa R. M. Rodrigues,et al.  Small and Macromolecules Crystallization Induced by Focused Ultrafast Laser , 2015 .

[47]  M. Sowa,et al.  Solid-state characterization and solubility of a genistein–caffeine cocrystal , 2014 .

[48]  M. Sowa,et al.  Engineering of phosphatidylcholine-based solid lipid nanocarriers for flavonoids delivery , 2014 .

[49]  Koen Robeyns,et al.  Solution cocrystallization, an effective tool to explore the variety of cocrystal systems: caffeine/dicarboxylic acid cocrystals , 2014 .

[50]  F. Emmerling,et al.  Evaluation of the formation pathways of cocrystal polymorphs in liquid-assisted syntheses , 2014 .

[51]  A. Ikni,et al.  A new experimental setup for high‐throughput controlled non‐photochemical laser‐induced nucleation: application to glycine crystallization , 2014 .

[52]  A. Ikni,et al.  Experimental Demonstration of the Carbamazepine Crystallization from Non-photochemical Laser-Induced Nucleation in Acetonitrile and Methanol , 2014 .

[53]  A. Nangia,et al.  Modulating the solubility of sulfacetamide by means of cocrystals , 2014 .

[54]  Sharmistha Pal,et al.  Thermal studies of furosemide–caffeine binary system that forms a cocrystal , 2014, Journal of Thermal Analysis and Calorimetry.

[55]  B. Maddah,et al.  A cocrystal of caffeine and dipicolinic acid: synthesis, characterization, X-ray crystallography, and solution studies , 2013, Journal of Structural Chemistry.

[56]  Geoff G. Z. Zhang,et al.  The curious case of (caffeine)·(benzoic acid): how heteronuclear seeding allowed the formation of an elusive cocrystal , 2013 .

[57]  N. Bhuvanesh,et al.  Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate , 2013 .

[58]  William Jones,et al.  Cocrystallization by Freeze-Drying: Preparation of Novel Multicomponent Crystal Forms , 2013 .

[59]  U. Ramamurty,et al.  The Role of Weak Interactions in the Phase Transition and Distinct Mechanical Behavior of Two Structurally Similar Caffeine Co-crystal Polymorphs Studied by Nanoindentation , 2013 .

[60]  N. Bhuvanesh,et al.  Syntheses, structural characterization, and DPPH radical scavenging activity of cocrystals of caffeine with 1- and 2-naphthoxyacetic acids , 2013 .

[61]  N. Bhuvanesh,et al.  Cocrystals of caffeine with formylphenoxyaliphatic acids: Syntheses, structural characterization, and biological activity , 2013 .

[62]  S. Price,et al.  Complex Polymorphic System of Gallic Acid—Five Monohydrates, Three Anhydrates, and over 20 Solvates , 2012, Crystal growth & design.

[63]  A. Dazzi,et al.  Homogeneous Nucleation-Growth Dynamics Induced by Single Laser Pulse in Supersaturated Solutions , 2012 .

[64]  R. Tan,et al.  Co-crystals of caffeine and piracetam with 4-hydroxybenzoic acid: Unravelling the hidden hydrates of 1 : 1 co-crystals , 2012 .

[65]  Michael J Zaworotko,et al.  Cocrystals of quercetin with improved solubility and oral bioavailability. , 2011, Molecular pharmaceutics.

[66]  P. W. Cains,et al.  Crystal Nucleation by Laser-Induced Cavitation , 2011 .

[67]  S. Boerrigter,et al.  Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: polymorphism and solid-state stability explored in detail using their crystal graphs , 2011 .

[68]  Hiroshi Masuhara,et al.  Crystallization in Unsaturated Glycine/D2O Solution Achieved by Irradiating a Focused Continuous Wave Near Infrared Laser , 2010 .

[69]  Geoff G. Z. Zhang,et al.  A 1:1 Cocrystal of Caffeine and 2-Hydroxy-1-Naphthoic Acid Obtained via a Slurry Screening Method , 2010 .

[70]  Henrique A. Matos,et al.  Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process , 2010 .

[71]  Tatsuya Shoji,et al.  Optical Trapping of Amino Acids in Aqueous Solutions , 2010 .

[72]  Michael J. Zaworotko,et al.  Structure―Stability Relationships in Cocrystal Hydrates: Does the Promiscuity of Water Make Crystalline Hydrates the Nemesis of Crystal Engineering? , 2010 .

[73]  Naír Rodríguez-Hornedo,et al.  Solubility Advantage of Pharmaceutical Cocrystals , 2009 .

[74]  Richard W. Duerst,et al.  Cocrystals of Caffeine and Hydroxybenzoic Acids Composed of Multiple Supramolecular Heterosynthons: Screening via Solution-Mediated Phase Transformation and Structural Characterization , 2009 .

[75]  S. Rohani,et al.  Polymorphism and crystallization of active pharmaceutical ingredients (APIs). , 2009, Current medicinal chemistry.

[76]  Philip J. Camp,et al.  Single Pulse, Single Crystal Laser-Induced Nucleation of Potassium Chloride , 2009 .

[77]  K. Takano,et al.  Laser energy dependence on femtosecond laser-induced nucleation of protein , 2008 .

[78]  A. Myerson,et al.  Polarization switching of crystal structure in the nonphotochemical laser-induced nucleation of supersaturated aqueous l-histidine , 2008 .

[79]  T. Friščić,et al.  Guest-Directed Assembly of Caffeine and Succinic Acid into Topologically Different Heteromolecular Host Networks upon Grinding , 2008 .

[80]  H. Masuhara,et al.  Crystallization of Glycine by Photon Pressure of a Focused CW Laser Beam , 2007 .

[81]  T. Friščić,et al.  Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. , 2007, Molecular pharmaceutics.

[82]  William Jones,et al.  Achieving Polymorphic and Stoichiometric Diversity in Cocrystal Formation: Importance of Solid-State Grinding, Powder X-ray Structure Determination, and Seeding , 2005 .

[83]  Allan S. Myerson,et al.  Intensity, Wavelength, and Polarization Dependence of Nonphotochemical Laser-Induced Nucleation in Supersaturated Aqueous Urea Solutions , 2005 .

[84]  H. Edwards,et al.  Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[85]  Masashi Yoshimura,et al.  Femtosecond laser-induced crystallization of 4- (dimethylamino)-N-methyl-4-stilbazolium tosylate , 2005 .

[86]  William Jones,et al.  Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration , 2005 .

[87]  Daniel Louër,et al.  Powder pattern indexing with the dichotomy method , 2004 .

[88]  S. Kanaya,et al.  Laser Irradiated Growth of Protein Crystal , 2003 .

[89]  F. Billes,et al.  Vibrational spectroscopic calculations on pyrogallol and gallic acid , 2002 .

[90]  Masashi Yoshimura,et al.  High-quality crystal growth of organic nonlinear optical crystal DAST , 2002 .

[91]  Young,et al.  Nonphotochemical, Polarization-Dependent, Laser-Induced Nucleation in Supersaturated Aqueous Urea Solutions. , 1996, Physical review letters.