The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis.

[1]  J. Deisenhofer,et al.  Nucleotide Control of Interdomain Interactions in the Conformational Reaction Cycle of SecA , 2002, Science.

[2]  J. Lorsch RNA Chaperones Exist and DEAD Box Proteins Get a Life , 2002, Cell.

[3]  A. Lambowitz,et al.  A DEAD-Box Protein Functions as an ATP-Dependent RNA Chaperone in Group I Intron Splicing , 2002, Cell.

[4]  Detlef D. Leipe,et al.  Classification and evolution of P-loop GTPases and related ATPases. , 2002, Journal of molecular biology.

[5]  A. Pyle,et al.  The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding , 2002, The EMBO journal.

[6]  D. Mckay,et al.  Helicase structure and mechanism. , 2002, Current opinion in structural biology.

[7]  N. Tanner,et al.  DExD/H box RNA helicases: from generic motors to specific dissociation functions. , 2001, Molecular cell.

[8]  W. Merrick,et al.  Further Characterization of the Helicase Activity of eIF4A , 2001, The Journal of Biological Chemistry.

[9]  Haiyang Li,et al.  Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Mckay,et al.  Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[12]  A. Pyle,et al.  The DExH protein NPH-II is a processive and directional motor for unwinding RNA , 2000, Nature.

[13]  B. Van Houten,et al.  Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair , 1999, The EMBO journal.

[14]  J. Schulze zur Wiesch,et al.  Biochemical properties of a minimal functional domain with ATP-binding activity of the NTPase/helicase of hepatitis C virus. , 1999, European journal of biochemistry.

[15]  D. Mckay,et al.  Crystallographic structure of the amino terminal domain of yeast initiation factor 4A, a representative DEAD-box RNA helicase. , 1999, RNA.

[16]  P. Weber,et al.  Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. , 1999, Structure.

[17]  F. Fuller-Pace,et al.  Interaction of the Escherichia coli DEAD box protein DbpA with 23 S ribosomal RNA. , 1999, Journal of molecular biology.

[18]  M. Dreyfus,et al.  Ded1p, a DEAD-box Protein Required for Translation Initiation in Saccharomyces cerevisiae, Is an RNA Helicase* , 1999, The Journal of Biological Chemistry.

[19]  U. Baumann,et al.  Crystal structure of the ATPase domain of translation initiation factor 4A from Saccharomyces cerevisiae--the prototype of the DEAD box protein family. , 1999, Structure.

[20]  J. de la Cruz,et al.  Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. , 1999, Trends in biochemical sciences.

[21]  S. Velankar,et al.  Crystal Structures of Complexes of PcrA DNA Helicase with a DNA Substrate Indicate an Inchworm Mechanism , 1999, Cell.

[22]  T. Formosa,et al.  Dna2 mutants reveal interactions with Dna polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full Dna2 helicase activity is not essential for growth. , 1999, Genetics.

[23]  G. Ciaramella,et al.  Characterization and mutational analysis of the helicase and NTPase activities of hepatitis C virus full-length NS3 protein. , 1999, The Journal of general virology.

[24]  Fumio Hanaoka,et al.  Systematic identification, classification, and characterization of the open reading frames which encode novel helicase‐related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis , 1999, Yeast.

[25]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[26]  C. Karreman Fusion PCR, a one-step variant of the "megaprimer" method of mutagenesis. , 1998, BioTechniques.

[27]  A. Hernández-Cruz,et al.  Influence of monovalent cations on yeast cytoplasmic and vacuolar pH , 1998, Yeast.

[28]  D. Garfinkel,et al.  Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. , 1998, Genetics.

[29]  G. Waksman,et al.  Comparisons between the structures of HCV and Rep helicases reveal structural similarities between SF1 and SF2 super‐families of helicases , 1998, Protein science : a publication of the Protein Society.

[30]  D. Tollervey,et al.  Dob1p (Mtr4p) is a putative ATP‐dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae , 1998, The EMBO journal.

[31]  C. Guthrie,et al.  Mechanical Devices of the Spliceosome: Motors, Clocks, Springs, and Things , 1998, Cell.

[32]  D. Herschlag,et al.  The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. , 1998, Biochemistry.

[33]  J P Griffith,et al.  Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. , 1998, Structure.

[34]  J. de la Cruz,et al.  Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae , 1997, Molecular and cellular biology.

[35]  Gabriel Waksman,et al.  Major Domain Swiveling Revealed by the Crystal Structures of Complexes of E. coli Rep Helicase Bound to Single-Stranded DNA and ADP , 1997, Cell.

[36]  C A Smith,et al.  Active site comparisons highlight structural similarities between myosin and other P-loop proteins. , 1996, Biophysical journal.

[37]  R. Iggo,et al.  Autoregulation of expression of the yeast Dbp2p ‘DEAD‐box’ protein is mediated by sequences in the conserved DBP2 intron. , 1995, The EMBO journal.

[38]  R. Müller,et al.  Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. , 1995, Gene.

[39]  F. Fuller-Pace,et al.  RNA helicases: modulators of RNA structure. , 1994, Trends in cell biology.

[40]  B. Rost,et al.  Combining evolutionary information and neural networks to predict protein secondary structure , 1994, Proteins.

[41]  Gerald R. Fink,et al.  Guide to yeast genetics and molecular biology , 1993 .

[42]  Eugene V. Koonin,et al.  Helicases: amino acid sequence comparisons and structure-function relationships , 1993 .

[43]  M. Carlson,et al.  An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family , 1992, Molecular and cellular biology.

[44]  N. Sonenberg,et al.  A lysine substitution in the ATP-binding site of eucaryotic initiation factor 4A abrogates nucleotide-binding activity , 1989, Molecular and cellular biology.

[45]  P. Slonimski,et al.  An essential yeast protein, encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Rodney Rothstein,et al.  Elevated recombination rates in transcriptionally active DNA , 1989, Cell.

[47]  P. Slonimski,et al.  Birth of the D-E-A-D box , 1989, Nature.

[48]  K. Chan,et al.  A direct colorimetric assay for Ca2+ -stimulated ATPase activity. , 1986, Analytical biochemistry.

[49]  R. Abramson,et al.  ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. , 1985, The Journal of biological chemistry.

[50]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[51]  Claire O'Donovan,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 , 1999, Nucleic Acids Res..

[52]  A. Gingras,et al.  eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. , 1999, Annual review of biochemistry.

[53]  U. Stahl,et al.  The protein family of RNA helicases. , 1998, Critical reviews in biochemistry and molecular biology.

[54]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[55]  P. Linder,et al.  Analysis of the genes encoding eIF-4A from yeast , 1993 .

[56]  H. Berman,et al.  The Protein Data Bank. , 2002, Acta crystallographica. Section D, Biological crystallography.