Long-ranged Protein-glycan Interactions Stabilize von Willebrand Factor A2 Domain from Mechanical Unfolding

[1]  J. Bowie,et al.  Unfolding of a ClC chloride transporter retains memory of its evolutionary history , 2018, Nature Chemical Biology.

[2]  Sunhwan Jo,et al.  Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank , 2017, Bioinform..

[3]  R. Tampé,et al.  Mutual A domain interactions in the force sensing protein von Willebrand factor. , 2017, Journal of structural biology.

[4]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[5]  C. Lynch,et al.  N-linked glycan stabilization of the VWF A2 domain. , 2016, Blood.

[6]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[7]  S. Neelamegham,et al.  Role of fluid shear stress in regulating VWF structure, function and related blood disorders , 2015, Biorheology.

[8]  F. Gräter,et al.  Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions. , 2015, Biophysical journal.

[9]  A. Oztekin,et al.  Flow-induced conformational change of von Willebrand Factor multimer: Results from a molecular mechanics informed model , 2015 .

[10]  A. Alexander-Katz Toward Novel Polymer-Based Materials Inspired in Blood Clotting , 2014 .

[11]  Manel Puig-Vidal,et al.  High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations , 2013, Science.

[12]  Sunhwan Jo,et al.  Glycan fragment database: a database of PDB-based glycan 3D structures , 2012, Nucleic Acids Res..

[13]  W. Thomas,et al.  Structural Basis of Type 2A von Willebrand Disease Investigated by Molecular Dynamics Simulations and Experiments , 2012, PloS one.

[14]  A. Dell,et al.  Mapping the N-glycome of human von Willebrand factor. , 2012, The Biochemical journal.

[15]  T. Springer,et al.  Calcium stabilizes the von Willebrand factor A2 domain by promoting refolding , 2012, Proceedings of the National Academy of Sciences.

[16]  D. Lane,et al.  Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. , 2011, Blood.

[17]  S. Tans,et al.  Calcium modulates force sensing by the von Willebrand factor A2 domain , 2011, Nature communications.

[18]  Jongseong Kim,et al.  A mechanically stabilized receptor–ligand flex-bond important in the vasculature , 2010, Nature.

[19]  J. Emsley,et al.  The importance of vicinal cysteines, C1669 and C1670, for von Willebrand factor A2 domain function. , 2010, Blood.

[20]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. , 2009, The journal of physical chemistry. B.

[21]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. , 2009, Journal of chemical theory and computation.

[22]  T. Springer,et al.  Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor , 2009, Proceedings of the National Academy of Sciences.

[23]  Cheng-Zhong Zhang,et al.  Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor , 2009, Science.

[24]  Jizhong Lou,et al.  Molecular Dynamics Simulated Unfolding of von Willebrand Factor A Domains by Force , 2009 .

[25]  F. Rico,et al.  Atomic Force Microscopy of Protein–Protein Interactions , 2009 .

[26]  Alexander D. MacKerell,et al.  Additive empirical force field for hexopyranose monosaccharides , 2008, J. Comput. Chem..

[27]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[28]  M. Laffan,et al.  N-linked glycosylation of VWF modulates its interaction with ADAMTS13. , 2008, Blood.

[29]  A Alexander-Katz,et al.  Shear-induced unfolding triggers adhesion of von Willebrand factor fibers , 2007, Proceedings of the National Academy of Sciences.

[30]  D. Vaux,et al.  Error bars in experimental biology , 2007, The Journal of cell biology.

[31]  Giuseppe Lippi,et al.  Von Willebrand factor and thrombosis , 2006, Annals of Hematology.

[32]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[33]  Z. Berneman,et al.  Characterization, classification, and treatment of von Willebrand diseases: a critical appraisal of the literature and personal experiences. , 2005, Seminars in thrombosis and hemostasis.

[34]  J. Sadler von Willebrand factor: two sides of a coin , 2005, Journal of thrombosis and haemostasis : JTH.

[35]  J. Sutherland,et al.  Molecular modeling of the von Willebrand factor A2 Domain and the effects of associated type 2A von Willebrand disease mutations , 2004, Journal of molecular modeling.

[36]  J. Moake,et al.  P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. , 2004, Blood.

[37]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[38]  Francesco Rodeghiero,et al.  Von Willebrand's disease in the year 2003: towards the complete identification of gene defects for correct diagnosis and treatment. , 2003, Haematologica.

[39]  Kazuo Fujikawa,et al.  ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. , 2002, Blood.

[40]  H. Tsai Deficiency of ADAMTS13 and thrombotic thrombocytopenic purpura. , 2002, Blood.

[41]  H. Tsai Deficiency of ADAMTS13 and thrombotic thrombocytopenic purpura , 2002, Transfusion.

[42]  J. Sixma,et al.  Structures of Glycoprotein Ibα and Its Complex with von Willebrand Factor A1 Domain , 2002, Science.

[43]  Bahman Anvari,et al.  Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. , 2002, Blood.

[44]  T. Foroud,et al.  Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura , 2001, Nature.

[45]  Li Zhang,et al.  Ligand Binding to Integrins* , 2000, The Journal of Biological Chemistry.

[46]  A. Colombatti,et al.  Identification of Domains Responsible for von Willebrand Factor Type VI Collagen Interaction Mediating Platelet Adhesion under High Flow* , 1999, The Journal of Biological Chemistry.

[47]  F. Cohen,et al.  Biochemistry and genetics of von Willebrand factor. , 1998, Annual review of biochemistry.

[48]  M. Humphries,et al.  A structure prediction for the ligand‐binding region of the integrin β subunit: evidence for the presence of a von Willebrand factor A domain , 1997, FEBS letters.

[49]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[50]  T. Matsushita,et al.  Identification of Amino Acid Residues Essential for von Willebrand Factor Binding to Platelet Glycoprotein Ib. , 1995, The Journal of Biological Chemistry.

[51]  T. Darden,et al.  The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods , 1993 .

[52]  J. Sixma,et al.  Effect of deletion of the A1 domain of von Willebrand factor on its binding to heparin, collagen and platelets in the presence of ristocetin. , 1991, European journal of biochemistry.

[53]  J. Ware,et al.  Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Meyer,et al.  Localization of a factor VIII binding domain on a 34 kilodalton fragment of the N-terminal portion of von Willebrand factor. , 1987, Blood.

[55]  S. Furukawa,et al.  Stopped-flow fluorescence studies on binding kinetics of neurotoxins with acetylcholine receptor. , 1986, Biochemistry.

[56]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[57]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[58]  F L STONE,et al.  TWO SIDES OF THE COIN. , 1963, Journal of medical education.