Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization

In this paper we study optimization problems related to bipartite quantum correlations using techniques from tracial noncommutative polynomial optimization. First we consider the problem of finding the minimal entanglement dimension of such correlations. We construct a hierarchy of semidefinite programming lower bounds and show convergence to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a quantum correlation when access to shared randomness is free. Then we study optimization problems over synchronous quantum correlations arising from quantum graph parameters. We introduce semidefinite programming hierarchies and unify existing bounds on quantum chromatic and quantum stability numbers by placing them in the framework of tracial polynomial optimization.

[1]  Narutaka Ozawa,et al.  About the Connes embedding conjecture , 2013 .

[2]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[3]  David E. Roberson,et al.  Oddities of Quantum Colorings , 2016, Balt. J. Mod. Comput..

[4]  Simone Severini,et al.  Estimating quantum chromatic numbers , 2014, 1407.6918.

[5]  Parikshit Shah,et al.  Guaranteed Tensor Decomposition: A Moment Approach , 2015, ICML.

[6]  M. Laurent THE OPERATOR FOR THE CHROMATIC NUMBER OF AGRAPH , 2008 .

[7]  Adrien Feix,et al.  Characterizing finite-dimensional quantum behavior , 2015, 1507.07521.

[8]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[9]  Ken Dykema,et al.  Synchronous correlation matrices and Connes' embedding conjecture , 2015, 1503.07207.

[10]  Monique Laurent,et al.  Conic Approach to Quantum Graph Parameters Using Linear Optimization Over the Completely Positive Semidefinite Cone , 2013, SIAM J. Optim..

[11]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[12]  M. Junge,et al.  Connes' embedding problem and Tsirelson's problem , 2010, 1008.1142.

[13]  Monique Laurent,et al.  Matrices With High Completely Positive Semidefinite Rank , 2016, 1605.00988.

[14]  Matthias Christandl,et al.  Lower bound on the dimension of a quantum system given measured data , 2008, 0808.3960.

[15]  Zhaohui Wei,et al.  Completely positive semidefinite rank , 2016, Math. Program..

[16]  Vern I. Paulsen,et al.  Non-closure of the Set of Quantum Correlations via Graphs , 2017, Communications in Mathematical Physics.

[17]  Monique Laurent,et al.  Computing Semidefinite Programming Lower Bounds for the (Fractional) Chromatic Number Via Block-Diagonalization , 2008, SIAM J. Optim..

[18]  S. Sullivant,et al.  Emerging applications of algebraic geometry , 2009 .

[19]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[20]  Igor Klep,et al.  Constrained trace-optimization of polynomials in freely noncommuting variables , 2016, J. Glob. Optim..

[21]  Stephanie Wehner,et al.  The Quantum Moment Problem and Bounds on Entangled Multi-prover Games , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[22]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[23]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[24]  Igor Klep,et al.  The truncated tracial moment problem , 2010, 1001.3679.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  Mermin,et al.  Simple unified form for the major no-hidden-variables theorems. , 1990, Physical review letters.

[27]  A. Peres Incompatible results of quantum measurements , 1990 .

[28]  Igor Klep,et al.  Optimization of Polynomials in Non-Commuting Variables , 2016 .

[29]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[30]  Cyril J. Stark,et al.  Learning optimal quantum models is NP-hard , 2015, 1510.02800.

[31]  Antonios Varvitsiotis,et al.  Linear conic formulations for two-party correlations and values of nonlocal games , 2015, Math. Program..

[32]  David E. Roberson,et al.  Quantum homomorphisms , 2016, J. Comb. Theory, Ser. B.

[33]  V. Scarani,et al.  Testing the dimension of Hilbert spaces. , 2008, Physical review letters.

[34]  George Phillip Barker,et al.  A non-commutative spectral theorem , 1978 .

[35]  Zhaohui Wei,et al.  On the minimum dimension of a Hilbert space needed to generate a quantum correlation , 2015, Physical review letters.

[36]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[37]  Antonios Varvitsiotis,et al.  Correlation matrices, Clifford algebras, and completely positive semidefinite rank , 2017, Linear and Multilinear Algebra.

[38]  T. Fritz TSIRELSON'S PROBLEM AND KIRCHBERG'S CONJECTURE , 2010, 1008.1168.

[39]  Igor Klep,et al.  Connes' embedding conjecture and sums of hermitian squares , 2008 .

[40]  Raúl E. Curto,et al.  Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .

[41]  Simone Severini,et al.  On the Quantum Chromatic Number of a Graph , 2007, Electron. J. Comb..

[42]  Simone Severini,et al.  New Separations in Zero-Error Channel Capacity Through Projective Kochen–Specker Sets and Quantum Coloring , 2013, IEEE Transactions on Information Theory.

[43]  Mario Szegedy,et al.  A note on the /spl theta/ number of Lovasz and the generalized Delsarte bound , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[44]  David E. Roberson,et al.  Variations on a Theme: Graph Homomorphisms , 2013 .

[45]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[46]  Zheng-Feng Ji,et al.  Binary Constraint System Games and Locally Commutative Reductions , 2013, ArXiv.

[47]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[48]  William Slofstra,et al.  THE SET OF QUANTUM CORRELATIONS IS NOT CLOSED , 2017, Forum of Mathematics, Pi.

[49]  Stefano Pironio,et al.  SDP Relaxations for Non-Commutative Polynomial Optimization , 2012 .

[50]  Monique Laurent,et al.  Lower Bounds on Matrix Factorization Ranks via Noncommutative Polynomial Optimization , 2017, Found. Comput. Math..

[51]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[52]  Jiawang Nie,et al.  Symmetric Tensor Nuclear Norms , 2016, SIAM J. Appl. Algebra Geom..

[53]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[54]  Monique Laurent,et al.  The Operator Psi for the Chromatic Number of a Graph , 2008, SIAM J. Optim..

[55]  Vern I. Paulsen,et al.  Quantum Graph Homomorphisms via Operator Systems , 2015, 1505.00483.

[56]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[57]  Miguel Navascués,et al.  Bounding the Set of Finite Dimensional Quantum Correlations. , 2014, Physical review letters.

[58]  T. V'ertesi,et al.  Efficiency of higher-dimensional Hilbert spaces for the violation of Bell inequalities , 2007, 0712.4320.

[59]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[60]  Antonios Varvitsiotis,et al.  Matrix factorizations of correlation matrices and applications , 2017 .

[61]  Igor Klep,et al.  The tracial moment problem and trace-optimization of polynomials , 2013, Math. Program..

[62]  David Avis,et al.  A Quantum Protocol to Win the Graph Colouring Game on All Hadamard Graphs , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[63]  Carlos Palazuelos,et al.  Survey on Nonlocal Games and Operator Space Theory , 2015, 1512.00419.