A Stochastic Approach for Parameterizing Unresolved Scales in a System with Memory

Complex systems display variability over a broad range of spatial and temporal scales. Some scales are unresolved due to computational limitations. The impact of these unresolved scales on the resolved scales needs to be parameterized or taken into account. One stochastic parameterization scheme is devised to take the effects of unresolved scales into account, in the context of solving a nonlinear partial differential equation with memory (a time-integral term), via large eddy simulations. The obtained large eddy simulation model is a stochastic partial differential equation. Numerical experiments are performed to compare the solutions of the original system and of the stochastic large eddy simulation model.

[1]  Vladas Pipiras,et al.  CONVERGENCE OF THE WEIERSTRASS-MANDELBROT PROCESS TO FRACTIONAL BROWNIAN MOTION , 2000 .

[2]  L. Arnold Hasselmann’s program revisited: the analysis of stochasticity in deterministic climate models , 2001 .

[3]  D. Wilks Effects of stochastic parametrizations in the Lorenz '96 system , 2005 .

[4]  Gilles A. Francfort,et al.  Homogenization and mechanical dissipation in thermoviscoelasticity , 1986 .

[5]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[6]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[7]  Ulrich Schumann,et al.  Stochastic backscatter of turbulence energy and scalar variance by random subgrid-scale fluxes , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  H. Kantz,et al.  Stochastic modelling: replacing fast degrees of freedom by noise. , 2001 .

[9]  Renate Hagedorn,et al.  Representing model uncertainty in weather and climate prediction , 2005 .

[10]  P. Berloff Random-forcing model of the mesoscale oceanic eddies , 2005, Journal of Fluid Mechanics.

[11]  Paul D. Williams,et al.  Modelling climate change: the role of unresolved processes , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[13]  V. Marchenko,et al.  Homogenization of Partial Differential Equations , 2005 .

[14]  P. Craigmile Simulating a class of stationary Gaussian processes using the Davies–Harte algorithm, with application to long memory processes , 2003 .

[15]  Johnny Wei-Bing Lin,et al.  Considerations for Stochastic Convective Parameterization , 2002 .

[16]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[17]  Eli Tziperman,et al.  Statistical Parameterization of Heterogeneous Oceanic Convection , 2007 .

[18]  Vanden Eijnden E,et al.  Models for stochastic climate prediction. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  B. Maslowski,et al.  Random Dynamical Systems and Stationary Solutions of Differential Equations Driven by the Fractional Brownian Motion , 2004 .

[20]  M. Sahimi,et al.  Characterization of long-range correlations in complex distributions and profiles , 1997 .

[21]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[22]  Hartmut Peters,et al.  Turbulence in the wintertime northern Adriatic Sea under strong atmospheric forcing , 2007 .

[23]  C. E. Leith,et al.  Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer , 1990 .

[24]  Philip Sura,et al.  Sensitivity of an Ocean Model to "Details" of Stochastic Forcing , 2002 .

[25]  Gerald Kaiser,et al.  Homogenization of Partial Differential Equations , 2005 .

[26]  Vittorino Pata,et al.  Asymptotic behavior of a semilinear problem in heat conduction with memory , 1998 .

[27]  F. Viens,et al.  Stochastic evolution equations with fractional Brownian motion , 2003 .

[28]  Wilhelm Huisinga,et al.  Extracting macroscopic stochastic dynamics: Model problems , 2003 .

[29]  J. M. Sancho,et al.  Noise in spatially extended systems , 1999 .

[30]  Jinqiao Duan,et al.  Stochastic parameterization for large eddy simulation of geophysical flows , 2006, math/0607214.

[31]  A. Ruzmaikina Stochastic calculus with fractional Brownian motion , 1999 .

[32]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[33]  David Nualart,et al.  Stochastic calculus with respect to the fractional Brownian motion and applications , 2003 .

[34]  Esko Valkeila,et al.  Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion , 2001 .

[35]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[36]  R. Lefever,et al.  Noise in nonlinear dynamical systems: Noise-induced transitions , 1989 .

[37]  D. Thomson,et al.  Stochastic backscatter in large-eddy simulations of boundary layers , 1992, Journal of Fluid Mechanics.

[38]  Jinqiao Duan,et al.  Probability and partial differential equations in modern applied mathematics , 2005 .

[39]  Prashant D. Sardeshmukh,et al.  Issues in Stochastic Parameterization , 2005 .

[40]  Hartmut Peters,et al.  Bottom Layer Turbulence in the Red Sea Outflow Plume , 2006 .

[41]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .