Disclinations in C60 molecular layers on WO2/W(110) surfaces

A scanning tunneling microscopy study of a planar close-packed C60 hexagonal molecular layer on a WO2/W(110) substrate reveals the existence of C60 domains exhibiting two preferred orientations at an angle with an underlying periodic groove structure in the substrate. An analysis of the van der Waals interactions between substrate and layer retrieves the observed misorientations as those corresponding to minima in the interaction energy of the substrate-layer system. The misorientation between two C60 domains is accommodated in a tilt boundary by a linear array of molecular structural units identified as disclination dipoles, i.e., rotational defects in the hexagonal structure of the layer. A field theory of disclinations and dislocations is used to construct maps of the elastic energy, strains, curvatures, and stresses induced by the lattice defects over the layer. The predicted regions of high compression are found to overlap with those where the fullerene molecules do not undergo rotation.

[1]  C. Fressengeas,et al.  Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle , 2014, Nature.

[2]  C. Fressengeas,et al.  Disclination mediated plasticity in shear-coupled boundary migration , 2014 .

[3]  A. V. Matetskiy,et al.  Dim C60 fullerenes on Si(111)√3×√3 - Ag surface , 2013 .

[4]  Yujie Wei,et al.  Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene , 2013 .

[5]  C. Fressengeas,et al.  Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations , 2013 .

[6]  S. Nepijko,et al.  Detailed study of defects in thin fullerite films , 2012 .

[7]  C. Fressengeas,et al.  An elasto-plastic theory of dislocation and disclination fields , 2011 .

[8]  I. Shvets,et al.  Rotational transitions in a C 60 monolayer on the WO 2 / W(110) surface , 2011 .

[9]  I. Shvets,et al.  Self-assembly and ordering of C60 on the WO2/W(110) surface , 2011 .

[10]  Klaus Sattler,et al.  Handbook of Nanophysics : Clusters and Fullerenes , 2010 .

[11]  I. Shvets,et al.  Oxidation of W(110) studied by LEED and STM , 2010 .

[12]  P. Liljeroth,et al.  Charge transport through molecular switches , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  G. Briggs,et al.  Scanning tunneling microscopy studies of C60 monolayers on Au(111) , 2009 .

[14]  R. D. Diehl,et al.  Origin of Moiré structures inC60on Pb(111) and their effect on molecular energy levels , 2009 .

[15]  Maurizio Prato,et al.  Nonlinear optical properties of ferrocene- and porphyrin-[60]fullerene dyads. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  Davide Bonifazi,et al.  Supramolecular [60]fullerene chemistry on surfaces. , 2007, Chemical Society reviews.

[17]  P. Ruffieux,et al.  C 60 on strain-relief patterns of Ag/Pt(111) : Film orientation governed by template superstructure , 2006 .

[18]  A. Acharya,et al.  Dislocation transport using an explicit Galerkin/least-squares formulation , 2006 .

[19]  V. Isupov Phase coexistence in lead zirconate titanate solid solutions , 2001 .

[20]  J. Gilman,et al.  Nanotechnology , 2001 .

[21]  Amit Acharya,et al.  A model of crystal plasticity based on the theory of continuously distributed dislocations , 2001 .

[22]  Yang Jinlong,et al.  Surface science: Topology of two-dimensional C60 domains , 2001, Nature.

[23]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[24]  K. Bohnen,et al.  Ab initio intermolecular potential of solid C-60 in the low-temperature phase. , 1999 .

[25]  W. D. Wang,et al.  Scanning tunneling microscopy of fullerenes on metal and semiconductor surfaces , 1997 .

[26]  Lundin,et al.  Compressibility of C60 in the temperature range 150-335 K up to a pressure of 1 GPa. , 1996, Physical review. B, Condensed matter.

[27]  R. A. Dilanyan,et al.  Mechanical properties and deformation of fullerites , 1995 .

[28]  T. Ebbesen,et al.  Superconductivity at 33 K in CsxRbyC60 , 1991, Nature.

[29]  L. Girifalco Interaction potential for carbon (C60) molecules , 1991 .

[30]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[31]  S. Papson,et al.  “Model” , 1981 .

[32]  R. Dewit Theory of Disclinations: IV. Straight Disclinations. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[33]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[34]  C. Fressengeas,et al.  Disclination densities from EBSD orientation mapping , 2013 .

[35]  M. M. Sigalas,et al.  PHYSICAL REVIEW B , 1996 .

[36]  L. Girifalco Molecular properties of fullerene in the gas and solid phases , 1992 .

[37]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[38]  Vito Volterra,et al.  Sur l'équilibre des corps élastiques multiplement connexes , 1907 .