Laser-Plasma Particle Sources for Biology and Medicine

Ultrashort, intense laser pulses can drive in plasmas small sized linear accelerators (Laser-Linac’s) of high energy elementary particles. These novel devices are facing a continuous, fast progress making them suitable alternatives to conventional linacs in many applications. Among them, cancer therapy may have by far the highest social impact at a global level. This paper is aimed at giving an updated overview of the scientific and technological effort devoted worldwide to the optimization of the laser acceleration technology in order to fulfill the clinical requirements. Here we discuss both ion and electron acceleration considering the different, challenging problems to be solved in each case. Current studies on radiobiology already in progress in many labs with the existing laser-based sources of particles are also described. The overall scenario in the field appears extremely exciting, and promises rapid, effective development.

[1]  W. Priedhorsky,et al.  Hard-X-Ray Measurements of 10.6-μm Laser-Irradiated Targets , 1981 .

[2]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[3]  T Shimomura,et al.  High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. , 2010, Optics letters.

[4]  A. V. Kuznetsov,et al.  Oncological hadrontherapy with laser ion accelerators , 2002 .

[5]  Masakatsu Murakami,et al.  Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells , 2009 .

[6]  Vladimir Chvykov,et al.  Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. , 2008, Medical physics.

[7]  Y. Gauduel,et al.  High energy radiation femtochemistry of water molecules: early electron-radical pairs processes , 2010 .

[8]  Gary A Ezzell,et al.  Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Committee Task Group No. 72. , 2006, Medical physics.

[9]  E Marubini,et al.  Radiotherapy after breast-conserving surgery in small breast carcinoma: long-term results of a randomized trial. , 2001, Annals of oncology : official journal of the European Society for Medical Oncology.

[10]  L. Labate,et al.  High-charge divergent electron beam generation from high-intensity laser interaction with a gas-cluster target , 2013, 1301.3044.

[11]  Rose,et al.  Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets. , 1994, Physical review letters.

[12]  J H LAWRENCE,et al.  Proton irradiation of the pituitary , 1957, Cancer.

[13]  Martin Richardson,et al.  Features of lateral energy transport in CO/sub 2/-laser-irradiated microdisk targets , 1983 .

[14]  Erik Lefebvre,et al.  Practicability of protontherapy using compact laser systems. , 2004, Medical physics.

[15]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[16]  Michael Bussmann,et al.  The scaling of proton energies in ultrashort pulse laser plasma acceleration , 2010 .

[17]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[18]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[19]  Masakatsu Murakami,et al.  Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline , 2011 .

[20]  T. Hosokai,et al.  Space- and time-resolved observation of extreme laser frequency upshifting during ultrafast-ionization , 2013 .

[21]  Eros Pedroni,et al.  Treating Cancer with Protons , 2002 .

[22]  R. Wilson Radiological use of fast protons. , 1946, Radiology.

[23]  R. Sauerbrey,et al.  Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas , 1993 .

[24]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[25]  Victor Malka,et al.  Ultra-short electron beams based spatio-temporal radiation biology and radiotherapy. , 2010, Mutation research.

[26]  R. Baskar,et al.  Cancer and Radiation Therapy: Current Advances and Future Directions , 2012, International journal of medical sciences.

[27]  S. Sawada,et al.  J-PARC Facility , 2010 .

[28]  Y. Gauduel,et al.  Ultrafast subnanometric spatial accuracy of a fleeting quantum probe interaction with a biomolecule: innovating concept for spatio-temporal radiation biomedicine , 2014, Photonics West - Biomedical Optics.

[29]  M Galimberti,et al.  Intense gamma-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. , 2008, Physical review letters.

[30]  F. Réau,et al.  Non-adiabatic cluster expansion after ultrashort laser interaction , 2008 .

[31]  Wolfgang Enghardt,et al.  Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator. , 2012, Journal of radiation research.

[32]  Table-top laser-plasma acceleration as an electron radiography source , 2006 .

[33]  O Willi,et al.  Effect of plasma scale length on multi-MeV proton production by intense laser pulses. , 2001, Physical review letters.

[34]  Marco Borghesi,et al.  Ion acceleration by superintense laser-plasma interaction , 2013, 1302.1775.

[35]  Kiminori Kondo,et al.  Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system. , 2012, Optics letters.

[36]  J Fan,et al.  Linear energy transfer of proton clusters , 2011, Physics in medicine and biology.

[37]  G. Malka,et al.  Electron and photon production from relativistic laser–plasma interactions , 2003 .

[38]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[39]  M. Kando,et al.  Focusing and stabilizing laser–plasma-generated electron beams with magnetic devices , 2014 .

[40]  H. Daido,et al.  Review of laser-driven ion sources and their applications , 2012, Reports on progress in physics. Physical Society.

[41]  M Borghesi,et al.  Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams , 2011, Physics in medicine and biology.

[42]  Antoine Rousse,et al.  Observation of Solid-Density Laminar Plasma Transparency to Intense 30 Femtosecond Laser Pulses , 1997 .

[43]  F. Pegoraro,et al.  Radiation reaction effects on radiation pressure acceleration , 2010, 1008.1685.

[44]  W. Enghardt,et al.  Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons. , 2010, Medical physics.

[45]  Erik Lefebvre,et al.  Principles and applications of compact laser–plasma accelerators , 2008 .

[46]  Leonida A. Gizzi,et al.  SHEEBA: A spatial high energy electron beam analyzer , 2005 .

[47]  J. Meyer-ter-Vehn,et al.  Influence of the laser prepulse on proton acceleration in thin-foil experiments. , 2004, Physical review letters.

[48]  Giuseppe Schettino,et al.  Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s , 2012 .

[49]  A Macchi,et al.  Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. , 2013, Physical review letters.

[50]  Colin R Muirhead,et al.  Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations , 2009, Journal of radiological protection : official journal of the Society for Radiological Protection.

[51]  P. d'Oliveira,et al.  Prepulse effect on intense femtosecond laser pulse propagation in gas , 2006 .

[52]  K Yamakawa,et al.  0.85-PW, 33-fs Ti:sapphire laser. , 2003, Optics letters.

[53]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[54]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[55]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[56]  F. Réau,et al.  Proton acceleration with high-intensity ultrahigh-contrast laser pulses. , 2007, Physical review letters.

[57]  S. V. Bulanov,et al.  Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system , 2009 .

[58]  P. Zoller,et al.  Brownian motion of a parametric oscillator: A model for ion confinement in radio frequency traps , 1986 .

[59]  H T Powell,et al.  Petawatt laser pulses. , 1999, Optics letters.

[60]  Giorgio Turchetti,et al.  High quality proton beams from hybrid integrated laser-driven ion acceleration systems , 2014 .

[61]  David Jaffray,et al.  The need to expand global access to radiotherapy. , 2014, The Lancet. Oncology.

[62]  T. Levato,et al.  Electron radiography using a table-top laser-cluster plasma accelerator , 2013 .

[63]  J. Koga,et al.  Fixed blueshift of high intensity short pulse lasers propagating in gas chambers , 2000 .