A Fast Fault-Tolerant Architecture for Sauvola Local Image Thresholding Algorithm Using Stochastic Computing

Binarization plays an important role in document image processing, particularly in degraded document images. Among all local image thresholding algorithms, Sauvola has excellent binarization performance for degraded document images. However, this algorithm is computationally intensive and sensitive to the noises from the internal computational circuits. In this paper, we present a stochastic implementation of Sauvola algorithm. Our experimental results show that the stochastic implementation of Sauvola needs much less time and area and can tolerate more faults, while consuming less power in comparison with its conventional implementation.

[1]  Graham J. G. Upton,et al.  A Dictionary of Statistics , 2002 .

[2]  Brian R. Gaines,et al.  Stochastic Computing Systems , 1969 .

[3]  Sergio L. Toral Marín,et al.  Stochastic pulse coded arithmetic , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[4]  John P. Hayes,et al.  Stochastic circuits for real-time image-processing applications , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[5]  Kia Bazargan,et al.  Computation on Stochastic Bit Streams Digital Image Processing Case Studies , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[6]  John P. Hayes,et al.  Exploiting correlation in stochastic circuit design , 2013, 2013 IEEE 31st International Conference on Computer Design (ICCD).

[7]  Xin Li,et al.  An Architecture for Fault-Tolerant Computation with Stochastic Logic , 2011, IEEE Transactions on Computers.

[8]  John P. Hayes,et al.  Survey of Stochastic Computing , 2013, TECS.

[9]  Howard C. Card,et al.  Stochastic Neural Computation I: Computational Elements , 2001, IEEE Trans. Computers.

[10]  David J. Lilja,et al.  A low power fault-tolerance architecture for the kernel density estimation based image segmentation algorithm , 2011, ASAP 2011 - 22nd IEEE International Conference on Application-specific Systems, Architectures and Processors.

[11]  Nikos Papamarkos,et al.  An Evaluation Technique for Binarization Algorithms , 2008, J. Univers. Comput. Sci..

[12]  Nicole Vincent,et al.  Comparison of Niblack inspired binarization methods for ancient documents , 2009, Electronic Imaging.

[13]  Nikos Papamarkos,et al.  Estimation of proper parameter values for document binarization , 2008 .

[14]  David J. Lilja,et al.  Using stochastic computing to implement digital image processing algorithms , 2011, 2011 IEEE 29th International Conference on Computer Design (ICCD).

[15]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[16]  Mohamed Cheriet,et al.  A learning framework for the optimization and automation of document binarization methods , 2013, Comput. Vis. Image Underst..

[17]  Thomas M. Breuel,et al.  Efficient implementation of local adaptive thresholding techniques using integral images , 2008, Electronic Imaging.

[18]  N. Otsu A threshold selection method from gray level histograms , 1979 .