Mesh‐Free Discrete Laplace–Beltrami Operator

In this work we propose a new discretization method for the Laplace–Beltrami operator defined on point‐based surfaces. In contrast to the existing point‐based discretization techniques, our approach does not rely on any triangle mesh structure, turning out truly mesh‐free. Based on a combination of Smoothed Particle Hydrodynamics and an optimization procedure to estimate area elements, our discretization method results in accurate solutions while still being robust when facing abrupt changes in the density of points. Moreover, the proposed scheme results in numerically stable discrete operators. The effectiveness of the proposed technique is brought to bear in many practical applications. In particular, we use the eigenstructure of the discrete operator for filtering and shape segmentation. Point‐based surface deformation is another application that can be easily carried out from the proposed discretization method.

[1]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[2]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[3]  Dan Liu,et al.  A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes , 2008, Comput. Math. Appl..

[4]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[5]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[6]  Tamal K. Dey,et al.  Convergence, stability, and discrete approximation of Laplace spectra , 2010, SODA '10.

[7]  Afonso Paiva,et al.  Meshless Helmholtz-Hodge Decomposition , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Szymon Rusinkiewicz,et al.  Estimating the Laplace‐Beltrami Operator by Restricting 3D Functions , 2009, Comput. Graph. Forum.

[9]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[10]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[11]  Valerio Pascucci,et al.  Fiedler trees for multiscale surface analysis , 2010, Comput. Graph..

[12]  Yehuda Koren,et al.  Visualization of labeled data using linear transformations , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[13]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[14]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[15]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[16]  Konrad Polthier,et al.  On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces , 2011, Comput. Graph. Forum.

[17]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[18]  L. Evans Measure theory and fine properties of functions , 1992 .

[19]  Yusu Wang,et al.  Eurographics Symposium on Geometry Processing 2009 Approximating Gradients for Meshes and Point Clouds via Diffusion Metric , 2022 .

[20]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[21]  Hao Zhang,et al.  Mesh Segmentation via Spectral Embedding and Contour Analysis , 2007, Comput. Graph. Forum.

[22]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[23]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[24]  Leonidas J. Guibas,et al.  Estimating surface normals in noisy point cloud data , 2004, Int. J. Comput. Geom. Appl..

[25]  Bart Adams,et al.  Meshless Approximation Methods and Applications in Physics Based Modeling and Animation , 2009, Eurographics.

[26]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[27]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[28]  Laurent Demanet Painless , highly accurate discretizations of the Laplacian on a smooth manifold , 2006 .

[29]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[30]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[31]  Marc Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..

[32]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[33]  A. Goldstein Convex programming in Hilbert space , 1964 .

[34]  B. Prabhakaran,et al.  Point-Based Manifold Harmonics , 2012, IEEE Transactions on Visualization and Computer Graphics.

[35]  Olga Sorkine-Hornung,et al.  Differential Representations for Mesh Processing , 2006, Comput. Graph. Forum.

[36]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[37]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.