Conclusions, Open Problems and Future Outlook

The final Chapter first summarizes and discusses the main conclusions described in the book. We then list a number of open problems, which we feel should be further pursued in continuation of what we have presented in earlier Chapters. We start with some recent results that extend the mathematical theory of integrability from the viewpoint of singularity analysis and continue with some directions that further develop the topics of nonlinear normal modes, localization, diffusion and the complex statistical properties of nonlinear lattices. Finally, regarding the future outlook of research in Hamiltonian dynamics, we briefly review three topics of great current interest that were not treated in the book, but are extremely important in view of their far-reaching experimental applications: (1) anomalous heat conduction and the discovery of mechanisms that control heat flow based on the dynamics of Hamiltonian lattices, (2) soliton dynamics in nonlinear photonic structures and (3) kinetic theory of Hamiltonian systems with applications to plasma physics.

[1]  Ch. Skokos,et al.  Comparing the efficiency of numerical techniques for the integration of variational equations , 2010, 1008.1890.

[2]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[3]  Nonlinear waves in disordered chains: probing the limits of chaos and spreading. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  E. Gerlach,et al.  Numerical integration of variational equations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  C. Wieman,et al.  Bose-Einstein Condensation in Atomic Gases , 1999 .

[6]  Bob Rink Symmetric invariant manifolds in the Fermi–Pasta–Ulam lattice , 2003 .

[7]  Simone Paleari,et al.  Exponentially long times to equipartition in the thermodynamic limit , 2004 .

[8]  Robert Conte,et al.  The Painlevé Handbook , 2020, Mathematical Physics Studies.

[9]  Dario Bambusi,et al.  On Metastability in FPU , 2006 .

[10]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[11]  David Ruelle,et al.  MEASURES DESCRIBING A TURBULENT FLOW , 1980 .

[12]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[13]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[14]  D. O. Krimer,et al.  Universal spreading of wave packets in disordered nonlinear systems. , 2008, Physical review letters.

[15]  Roberto Barrio,et al.  Spurious structures in chaos indicators maps , 2009 .

[16]  Antonio Politi,et al.  Distribution of characteristic exponents in the thermodynamic limit , 1986 .

[17]  D. O. Krimer,et al.  Erratum: Universal spreading of wave packets in disordered nonlinear systems [Phys. Rev. Lett. 102, 024101 (2009)]. , 2009 .

[18]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[19]  M Leo,et al.  Stability properties of the N/4 (pi/2-mode) one-mode nonlinear solution of the Fermi-Pasta-Ulam-beta system. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[21]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[22]  Giovanni Gallavotti,et al.  Twistless KAM tori , 1993, chao-dyn/9306003.

[23]  C. Efthymiopoulos,et al.  Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Nonlinearity and disorder: theory and applications , 2001 .

[25]  W. Ketterle,et al.  Making, probing and understanding Bose-Einstein condensates , 1999, cond-mat/9904034.

[26]  K. G. Zhukov,et al.  Stability analysis of dynamical regimes in nonlinear systems with discrete symmetries. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Elena Lega,et al.  On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .

[28]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[29]  T. Bountis Investigating non-integrability and chaos in complex time , 1995 .

[30]  S. Flach,et al.  Spreading of wave packets in disordered systems with tunable nonlinearity. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Constantino Tsallis,et al.  Ubiquity of metastable-to-stable crossover in weakly chaotic dynamical systems , 2004 .

[32]  T. V. Laptyeva,et al.  The crossover from strong to weak chaos for nonlinear waves in disordered systems , 2010, 1005.0485.

[33]  Generalized Lyapunov characteristic indicators and corresponding Kolmogorov like entropy of the standard mapping , 1993 .

[34]  P. Magnenat,et al.  Simple three-dimensional periodic orbits in a galactic-type potential , 1985 .

[35]  Baowen Li,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[36]  P. Patsis,et al.  Chaos in Astronomy , 2009 .

[37]  A. Sievers,et al.  Intrinsic localized modes in anharmonic crystals. , 1988, Physical review letters.

[38]  Tassos Bountis,et al.  Discrete Symmetry and stability in Hamiltonian Dynamics , 2010, Int. J. Bifurc. Chaos.

[39]  Susumu Shinohara Low-Dimensional Subsystems in Anharmonic Lattices , 2003 .

[40]  Dario Bambusi,et al.  Resonance, Metastability and Blow up in FPU , 2007 .

[41]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[42]  L. Peliti,et al.  Approach to equilibrium in a chain of nonlinear oscillators , 1982 .

[43]  Kivshar Intrinsic localized modes as solitons with a compact support. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  S. D. Queiros The role of ergodicity and mixing in the central limit theorem for Casati–Prosen triangle map variables , 2008, 0802.0406.

[46]  Page,et al.  Interrelation between the stability of extended normal modes and the existence of intrinsic localized modes in nonlinear lattices with realistic potentials. , 1994, Physical review. B, Condensed matter.

[47]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[48]  Andrey V. Gorbach,et al.  Discrete breathers — Advances in theory and applications , 2008 .

[49]  R. Sagdeev,et al.  Nonlinear oscillations of rarified plasma , 1961 .

[50]  H. Segur,et al.  Logarithmic singularities and chaotic behavior in Hamiltonian systems , 1982 .

[51]  G. M. Chechin,et al.  Bushes of modes and normal modes for nonlinear dynamical systems with discrete symmetry , 1994 .

[52]  Chris G. Antonopoulos,et al.  Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi–Pasta–Ulam lattices by the Generalized Alignment Index method , 2008, 0802.1646.

[53]  D. Bambusi,et al.  Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. , 2005, Chaos.

[54]  Jürgen Kurths,et al.  Characterization of stickiness by means of recurrence. , 2007, Chaos.

[55]  Julien Chabé,et al.  Experimental observation of the Anderson metal-insulator transition with atomic matter waves. , 2007, Physical review letters.

[56]  K. G. Zhukov,et al.  Stability of low-dimensional bushes of vibrational modes in the Fermi-Pasta-Ulam chains , 2005 .

[57]  G. Contopoulos,et al.  Invariant spectra of orbits in dynamical systems , 1994 .

[58]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[59]  D. Munday Edge of chaos. , 2002, Journal of the Royal Society of Medicine.

[60]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[61]  Ja B Pesin FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO CHARACTERISTIC EXPONENTS , 1976 .

[62]  Constantino Tsallis,et al.  Nonadditive entropy and nonextensive statistical mechanics – Some central concepts and recent applications , 2010 .

[63]  P. Stránský,et al.  Classical and quantum properties of the semiregular arc inside the Casten triangle , 2007 .

[64]  Tassos Bountis,et al.  Stability of simple periodic orbits and chaos in a Fermi-Pasta-Ulam lattice. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  S. Ruffo,et al.  Scaling with System Size of the Lyapunov Exponents for the Hamiltonian Mean Field Model , 2010, 1006.5341.

[66]  G. Kopidakis,et al.  Transmission thresholds in time-periodically driven nonlinear disordered systems , 2008, 0812.3620.

[67]  J. A. Núñez,et al.  Information entropy , 1996 .

[68]  Ugur Tirnakli,et al.  Analysis of return distributions in the coherent noise model. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Fast detection of chaotic behavior in galactic potentials , 2008 .

[70]  Y. Kivshar,et al.  Matter-wave gap vortices in optical lattices , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[71]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[72]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[73]  A. Fokas,et al.  Order and the ubiquitous occurrence of chaos , 1996 .

[74]  M C Romano,et al.  Distinguishing quasiperiodic dynamics from chaos in short-time series. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  D. Thouless,et al.  Numerical studies of localization in disordered systems , 1972 .

[76]  Xinxin Jiang,et al.  On q-Gaussians and exchangeability , 2009, 0911.1176.

[77]  Chris G. Antonopoulos,et al.  Weak Chaos Detection in the Fermi-PASTA-Ulam-α System Using Q-Gaussian Statistics , 2011, Int. J. Bifurc. Chaos.

[78]  Lyapunov exponent of ion motion in microplasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Flach Obtaining breathers in nonlinear Hamiltonian lattices. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  Zsolt Sándor,et al.  The Relative Lyapunov Indicator: An Efficient Method of Chaos Detection , 2004 .

[81]  T. Bountis,et al.  Application of the GALI method to localization dynamics in nonlinear systems , 2008, 0806.3563.

[82]  Demetrios N. Christodoulides,et al.  Lattice solitons in Bose-Einstein condensates , 2003 .

[83]  T. Bountis,et al.  Quasiperiodic and chaotic discrete breathers in a parametrically driven system without linear dispersion. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  A. Lichtenberg,et al.  Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[85]  M. Irwin,et al.  Smooth Dynamical Systems , 2001 .

[86]  A. Ram,et al.  Kinetic theory for distribution functions of wave-particle interactions in plasmas. , 2010, Physical review letters.

[87]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[88]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[89]  Constantino Tsallis,et al.  Generalization of symmetric alpha-stable Lévy distributions for q>1. , 2009, Journal of mathematical physics.

[90]  G. Casati,et al.  Heat Conductivity and Dynamical Instability , 1999 .

[91]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[92]  T. L. Hill,et al.  Thermodynamics of Small Systems , 2002 .

[93]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[94]  Florian Freistetter Fractal Dimensions as Chaos Indicators , 2001 .

[95]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[96]  T. Bau,et al.  Letter singularities of integrable and near-integrable hamiltonian systems , 1997 .

[97]  G. Kopidakis,et al.  Absence of wave packet diffusion in disordered nonlinear systems. , 2007, Physical review letters.

[98]  Bálint Érdi,et al.  Chaotic and stable behaviour in the Caledonian Symmetric Four-Body Problem , 2004 .

[99]  S. Flach,et al.  The two-stage dynamics in the Fermi-Pasta-Ulam problem: from regular to diffusive behavior. , 2011, Chaos.

[100]  Constantino Tsallis,et al.  On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics , 2008 .

[101]  Charalampos Skokos,et al.  Probing the Local Dynamics of periodic orbits by the generalized Alignment Index (Gali) Method , 2011, Int. J. Bifurc. Chaos.

[102]  Thierry Dauxois Non-Gaussian distributions under scrutiny , 2007 .

[103]  Jacques Laskar,et al.  Frequency analysis for multi-dimensional systems: global dynamics and diffusion , 1993 .

[104]  H. Shiba,et al.  Anomalous Heat Conduction in Three-Dimensional Nonlinear Lattices(General) , 2007, 0712.1642.

[105]  E. Athanassoula,et al.  Regular and chaotic orbits in barred galaxies - I. Applying the SALI/GALI method to explore their distribution in several models , 2011, 1102.1157.

[106]  S. Skipetrov,et al.  Localization of ultrasound in a three-dimensional elastic network , 2008, 0805.1502.

[107]  A. Pikovsky,et al.  Spreading in disordered lattices with different nonlinearities , 2010, 1002.3470.

[108]  Kosevich Nonlinear sinusoidal waves and their superposition in anharmonic lattices. , 1993, Physical review letters.

[109]  Ch. Skokos,et al.  Application of the Generalized Alignment Index (GALI) method to the dynamics of multi--dimensional symplectic maps , 2007, 0712.1720.

[110]  P. Cincotta,et al.  A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings , 2011, 1108.2196.

[111]  Yaron Silberberg,et al.  Discrete Solitons in Optics , 2008 .

[112]  Comparison of convergence towards invariant distributions for rotation angles, twist angles and local Lyapunov characteristic numbers , 1998 .

[113]  Giovanni Gallavotti,et al.  TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.

[114]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[115]  Chris G. Antonopoulos,et al.  Quasi-stationary chaotic states in multi-dimensional Hamiltonian systems , 2010, 1009.3049.

[116]  L. Galgani,et al.  Localization of energy in FPU chains , 2004 .

[117]  R. M. Rosenberg,et al.  The Normal Modes of Nonlinear n-Degree-of-Freedom Systems , 1962 .

[118]  G. Contopoulos,et al.  A fast method for distinguishing between ordered and chaotic orbits. , 1997 .

[119]  Roberto Barrio,et al.  Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.

[120]  Alfred Ramani,et al.  The Painlevé property and singularity analysis of integrable and non-integrable systems , 1989 .

[121]  Nuo Yang,et al.  Carbon nanocone: A promising thermal rectifier , 2008 .

[122]  Lluis Torner,et al.  Soliton Shape and Mobility Control in Optical Lattices , 2009 .

[123]  K. Hizanidis,et al.  Power dependent soliton location and stability in complex photonic structures. , 2008, Optics express.

[124]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[125]  Alessandro Torcini,et al.  Localization and equipartition of energy in the b-FPU chain: chaotic breathers , 1998 .

[126]  Mikhail V. Ivanchenko,et al.  Scaling properties of q-breathers in nonlinear acoustic lattices , 2006, nlin/0607019.

[127]  Symbolic Dynamics Approach to the Two-Dimensional Chaos in Area-Preserving Maps: A Fractal Geometrical Model , 1984 .

[128]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[129]  Bambi Hu,et al.  HEAT CONDUCTION IN ONE-DIMENSIONAL CHAINS , 1997, cond-mat/9712064.

[130]  J. C. Ross,et al.  Multibreathers and homoclinic orbits in 1-dimensional nonlinear lattices , 2000 .

[131]  G. Kopidakis,et al.  KAM tori in 1D random discrete nonlinear Schrödinger model? , 2010, 1007.1912.

[132]  Bambi Hu,et al.  Finite thermal conductivity in 1D models having zero Lyapunov exponents. , 2002, Physical review letters.

[133]  James D. Meiss,et al.  Transport in Hamiltonian systems , 1984 .

[134]  Panayotis G. Kevrekidis,et al.  The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives , 2009 .

[135]  S. Flach,et al.  The Fermi–Pasta–Ulam problem: Periodic orbits, normal forms and resonance overlap criteria , 2007, 0705.0804.

[136]  Ch. Skokos,et al.  Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .

[137]  Joseph Ford,et al.  The Fermi-Pasta-Ulam problem: Paradox turns discovery , 1992 .

[138]  C. Efthymiopoulos,et al.  Method for distinguishing between ordered and chaotic orbits in four-dimensional maps , 1998 .

[139]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[140]  Mikhail V. Ivanchenko,et al.  q-BREATHERS IN FPU-LATTICES — SCALING AND PROPERTIES FOR LARGE SYSTEMS , 2007 .

[141]  I. Kovacic,et al.  The Duffing Equation: Nonlinear Oscillators and their Behaviour , 2011 .

[142]  Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier , 2002, cond-mat/0201125.

[143]  Boris A. Malomed,et al.  Solitons in nonlinear lattices , 2011 .

[144]  Mel’nikov Vector and Singularity Analysis of Periodically Perturbed 2 D.O.F Hamiltonian Systems , 1999 .

[145]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[146]  M. Poincaré,et al.  Sur les propriétés des fonctions définies par les équations aux différences partielles , 1879 .

[147]  G. Contopoulos,et al.  Spectra of stretching numbers and helicity angles in dynamical systems , 1996 .

[148]  K. Hizanidis,et al.  Power-dependent reflection, transmission, and trapping dynamics of lattice solitons at interfaces. , 2008, Physical review letters.

[149]  D. O. Krimer,et al.  Delocalization of wave packets in disordered nonlinear chains. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  D. O. Krimer,et al.  Statistics of wave interactions in nonlinear disordered systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[151]  T. Bountis,et al.  Studying the Global Dynamics of Conservative Dynamical Systems Using the SALI Chaos Detection Method , 2007, nlin/0703037.

[152]  Georg A. Gottwald,et al.  Testing for Chaos in Deterministic Systems with Noise , 2005 .

[153]  D. Escande,et al.  NONSTANDARD DIFFUSION PROPERTIES OF THE STANDARD MAP , 1998 .

[154]  G. Voyatzis,et al.  Comparative Study of the 2:3 and 3:4 Resonant Motion with Neptune: An Application of Symplectic Mappings and Low Frequency Analysis , 2004 .

[155]  A. Pikovsky,et al.  Destruction of Anderson localization by a weak nonlinearity. , 2007, Physical review letters.

[156]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[157]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[158]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[159]  R. White,et al.  Calculation of Turbulent Diffusion for the Chirikov-Taylor Model , 1980 .

[160]  S. Fishman,et al.  Spreading for the generalized nonlinear Schrödinger equation with disorder. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[161]  T. Bountis,et al.  Stabilization of discrete breathers using continuous feedback control , 2002 .

[162]  George Contopoulos,et al.  Order and chaos , 1994 .

[163]  Mustafa Abstract , 1952 .

[164]  D. Shepelyansky,et al.  Delocalization induced by nonlinearity in systems with disorder. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  G. M. Chechin,et al.  Complete order parameter condensate of low-symmetry phases upon structural phase transitions , 1989 .

[166]  V. A. Brazhnyi,et al.  THEORY OF NONLINEAR MATTER WAVES IN OPTICAL LATTICES , 2004 .

[167]  G. Benettin,et al.  The Fermi-Pasta-Ulam Problem: Scaling Laws vs. Initial Conditions , 2009 .

[168]  Stephen Wiggins,et al.  Chaotic transport in dynamical systems , 1991 .

[169]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[170]  Michael N. Vrahatis,et al.  How Does the Smaller Alignment Index (SALI) Distinguish Order from Chaos , 2003, nlin/0301035.

[171]  M Leo,et al.  Numerical analysis of the one-mode solutions in the Fermi-Pasta-Ulam system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[172]  A. Katok Lyapunov exponents, entropy and periodic orbits for diffeomorphisms , 1980 .

[173]  G. Benettin,et al.  The Fermi—Pasta—Ulam Problem and the Metastability Perspective , 2007 .

[174]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[175]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[176]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[177]  Ch. Skokos,et al.  Space charges can significantly affect the dynamics of accelerator maps , 2006 .

[178]  P. Santini,et al.  Towards a theory of chaos explained as travel on Riemann surfaces , 2008, 0805.4130.

[179]  George Contopoulos,et al.  Order and Chaos in Dynamical Astronomy , 2002 .

[180]  Ugur Tirnakli,et al.  Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasiperiodic edge of chaos. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[181]  Georg Maret,et al.  Observation of the critical regime near Anderson localization of light. , 2005, Physical review letters.

[182]  Constantino Tsallis,et al.  Closer look at time averages of the logistic map at the edge of chaos. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[183]  Elena Lega,et al.  THE FAST LYAPUNOV INDICATOR: A SIMPLE TOOL TO DETECT WEAK CHAOS. APPLICATION TO THE STRUCTURE OF THE MAIN ASTEROIDAL BELT , 1997 .

[184]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[185]  M. A. Lieberman,et al.  Time scale to ergodicity in the Fermi-Pasta-Ulam system. , 1995, Chaos.

[186]  Yuri S. Kivshar,et al.  Dynamics of Solitons in Nearly Integrable Systems , 1989 .

[187]  B. Kramer,et al.  Localization: theory and experiment , 1993 .

[188]  Kazuyuki Yoshimura Modulational instability of zone boundary mode in nonlinear lattices: rigorous results. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[189]  M. Segev,et al.  Transport and Anderson localization in disordered two-dimensional photonic lattices , 2007, Nature.

[190]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[191]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[192]  Diffusion rates in a 4-dimensional mapping model of accelerator dynamics , 1994 .

[193]  P. Greenwood,et al.  A Guide to Chi-Squared Testing , 1996 .

[194]  T. Bountis,et al.  Evidence of a natural boundary and nonintegrability of the mixmaster universe model , 1997 .

[195]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[196]  Measure of orbital stickiness and chaos strength. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[197]  K. Hizanidis,et al.  Breathers in a nonautonomous Toda lattice with pulsating coupling. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[198]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[199]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[200]  Jacques Laskar,et al.  The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .

[201]  T. Bountis,et al.  Analytical Solutions of Systems with Piecewise Linear Dynamics , 2010, Int. J. Bifurc. Chaos.

[202]  E. Hille,et al.  Lectures on ordinary differential equations , 1968 .

[203]  Yuri S. Kivshar,et al.  Solitons in photonic crystals , 2003 .

[204]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[205]  Zbigniew Galias,et al.  Rigorous investigation of the Ikeda map by means of interval arithmetic , 2002 .

[206]  G. M. Chechin,et al.  SYMMETRICAL SELECTION RULES IN NONLINEAR DYNAMICS OF ATOMIC SYSTEMS , 1993 .

[207]  Haruo Yoshida,et al.  Recent progress in the theory and application of symplectic integrators , 1993 .

[208]  A. Politi,et al.  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[209]  Allan N. Kaufman,et al.  Quasilinear Diffusion of an Axisymmetric Toroidal Plasma , 1972 .

[210]  Christian Beck Brownian motion from deterministic dynamics , 1990 .

[211]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[212]  Roberto Barrio,et al.  Sensitivity tools vs. Poincaré sections , 2005 .

[213]  Stefano Ruffo,et al.  Exact solutions in the FPU oscillator chain , 1995, chao-dyn/9510017.

[214]  D. Merritt,et al.  Self-consistent Models of Cuspy Triaxial Galaxies with Dark Matter Halos , 2006, astro-ph/0611205.

[215]  Y. Kominis Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[216]  Timoteo Carletti,et al.  Hamiltonian control used to improve the beam stability in particle accelerator models , 2012 .

[217]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[218]  Cary,et al.  Nonquasilinear diffusion far from the chaotic threshold. , 1990, Physical review letters.

[219]  S. Chow,et al.  Geometry of the Melnikov vector , 1992 .

[220]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .

[221]  G. Schehr,et al.  A note on q-Gaussians and non-Gaussians in statistical mechanics , 2007, 0705.0600.

[222]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[223]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[224]  S. Flach Spreading of waves in nonlinear disordered media , 2010, 1001.2673.

[225]  S. Aubry,et al.  Breathers in nonlinear lattices: existence, linear stability and quantization , 1997 .

[226]  C. Efthymiopoulos,et al.  The Phase Space Structure Around L4 in the Restricted Three-Body Problem , 2000 .

[227]  Vulpiani,et al.  Further results on the equipartition threshold in large nonlinear Hamiltonian systems. , 1985, Physical review. A, General physics.

[228]  T. Bountis,et al.  Mel'nikov analysis of phase space transport in a n-degree-of-freedom Hamiltonian system , 1997 .

[229]  On the spectral analysis of trajectories in near-integrable Hamiltonian systems , 1992 .

[230]  Michael N. Vrahatis,et al.  Evolutionary Methods for the Approximation of the Stability Domain and Frequency Optimization of Conservative Maps , 2008, Int. J. Bifurc. Chaos.

[231]  M. N. Vrahatis,et al.  Homoclinic orbits of invertible maps , 2002 .

[232]  A. Giorgilli,et al.  A CLASSICAL SELF-CONTAINED PROOF OF KOLMOGOROV'S THEOREM ON INVARIANT TORI , 1999 .

[233]  George Contopoulos,et al.  On the number of isolating integrals in Hamiltonian systems , 1978 .

[234]  C. R. Willis,et al.  Discrete Breathers , 1997 .

[235]  A. Giorgilli,et al.  Kolmogorov theorem and classical perturbation theory , 1997 .

[236]  L. Galgani,et al.  Planck-like Distributions in Classical Nonlinear Mechanics , 1972 .

[237]  A. Lichtenberg,et al.  Finite times to equipartition in the thermodynamic limit. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[238]  Jian-Sheng Wang,et al.  Intriguing heat conduction of a chain with transverse motions. , 2004, Physical review letters.

[239]  M. Ivanchenko,et al.  q-Breathers and the Fermi-Pasta-Ulam problem. , 2005, Physical review letters.

[240]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[241]  C. Antonopoulos,et al.  Weak chaos and the "melting transition" in a confined microplasma system. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[242]  Peter Grassberger,et al.  Proposed central limit behavior in deterministic dynamical systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[243]  G. M. Chechin,et al.  Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results , 1998 .

[244]  A. Goriely Integrability and Nonintegrability of Dynamical Systems , 2001 .

[245]  A. Ovchinnikov Localized Long-lived Vibrational States in Molecular Crystals , 1969 .

[246]  Tassos Bountis,et al.  Chaotic Dynamics of n-Degree of Freedom Hamiltonian Systems , 2005, Int. J. Bifurc. Chaos.

[247]  P. Stránský,et al.  Regularity-induced separation of intrinsic and collective dynamics. , 2010, Physical review letters.

[248]  Michael C. Mackey,et al.  Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic semi-dynamical system , 2004 .

[249]  M. Glasser,et al.  Mel'nikov's function for two-dimensional mappings , 1989 .

[250]  K. E. Papadakis,et al.  Periodic orbits and bifurcations in the Sitnikov four-body problem , 2008 .

[251]  K Hizanidis,et al.  Lattice solitons in self-defocusing optical media: analytical solutions of the nonlinear Kronig-Penney model. , 2006, Optics letters.

[252]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[253]  K. Hizanidis,et al.  Surface solitons in waveguide arrays: Analytical solutions. , 2007, Optics express.

[254]  B. Dorizzi,et al.  Painleve property and integrals of motion for the Henon-Heiles system , 1982 .

[255]  G. Casati,et al.  Heat conduction in one dimensional systems: Fourier law, chaos, and heat control , 2005, cond-mat/0502546.

[256]  Ch. Skokos,et al.  Application of the SALI chaos detection method to accelerator mappings , 2006 .

[257]  C. Tsallis,et al.  Nonextensivity at the edge of chaos of a new universality class of one-dimensional unimodal dissipative maps , 2009, 0901.4292.

[258]  A. Lichtenberg,et al.  Dynamics of Oscillator Chains , 2007 .

[259]  J. Bergamin Localization in nonlinear lattices and homoclinic dynamics , 2003 .

[260]  David K Campbell,et al.  Introduction: The Fermi-Pasta-Ulam problem--the first fifty years. , 2005, Chaos.

[261]  H. Hilhorst,et al.  Note on a q-modified central limit theorem , 2010, 1008.4259.

[262]  T. Bountis Stability of Motion: From Lyapunov to the Dynamics of N{Degree of Freedom Hamiltonian Systems , 2006 .

[263]  T. Bountis,et al.  Time-Evolving Statistics of Chaotic orbits of Conservative Maps in the Context of the Central Limit Theorem , 2011, Int. J. Bifurc. Chaos.

[264]  G. Contopoulos,et al.  Lyapunov characteristic numbers and the structure of phase-space , 1989 .

[265]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[266]  M. I. Molina,et al.  Transport of localized and extended excitations in a nonlinear Anderson model , 1998 .

[267]  P. Anderson,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[268]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[269]  G. Berman,et al.  The Fermi-Pasta-Ulam problem: fifty years of progress. , 2004, Chaos.

[270]  G. M. Chechin,et al.  Existence and stability of bushes of vibrational modes for octahedral mechanical systems with Lennard–Jones potential , 2001 .

[271]  Jacques Laskar,et al.  Introduction to Frequency Map Analysis , 1999 .

[272]  K. Hizanidis,et al.  Power- and momentum-dependent soliton dynamics in lattices with longitudinal modulation , 2011, 1104.0900.

[273]  Tassos Bountis,et al.  Stability of nonlinear modes and chaotic properties of 1D Fermi-Pasta-Ulam lattices , 1983 .

[274]  Conditions on the existence of localized excitations in nonlinear discrete systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[275]  R. Sagdeev,et al.  Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory , 1997 .

[276]  Generalized Lyapunov Exponents Indicators in Hamiltonian Dynamics: An Application to a Double Star System. , 1993 .

[277]  E. Lega,et al.  FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .

[278]  Charalampos Skokos,et al.  Wave Interactions in Localizing Media - a Coin with Many Faces , 2011, Int. J. Bifurc. Chaos.

[279]  L. H. Eliasson,et al.  Absolutely convergent series expansions for quasi periodic motions. , 1996 .

[280]  Slow dynamics in critical ferromagnetic vector models relaxing from a magnetized initial state , 2006, cond-mat/0610266.

[281]  Chris G. Antonopoulos,et al.  Detecting Order and Chaos by the Linear Dependence Index (LDI) Method , 2007, 0711.0360.

[282]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[283]  C. Tsallis,et al.  Strictly and asymptotically scale invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions , 2008, 0804.1488.

[284]  Giulio Casati,et al.  Mixing Property of Triangular Billiards , 1999, chao-dyn/9908022.

[285]  F. Vivaldi,et al.  Integrable Hamiltonian Systems and the Painleve Property , 1982 .

[286]  Holger Kantz,et al.  Internal Arnold diffusion and chaos thresholds in coupled symplectic maps , 1988 .

[287]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[288]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[289]  Charalampos Skokos,et al.  Efficient Integration of the variational equations of Multidimensional Hamiltonian Systems: Application to the Fermi-PASTA-Ulam Lattice , 2011, Int. J. Bifurc. Chaos.

[290]  A. Ram,et al.  Quasilinear theory of electron transport by radio frequency waves and nonaxisymmetric perturbations in toroidal plasmas , 2008 .

[291]  K. E. Papadakis,et al.  The stability of vertical motion in the N-body circular Sitnikov problem , 2009 .

[292]  H. Davis Introduction to Nonlinear Differential and Integral Equations , 1964 .

[293]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[294]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[295]  Susumu Shinohara Low-Dimensional Solutions in the Quartic Fermi–Pasta–Ulam System , 2002 .

[296]  Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices. , 2004, Chaos.

[297]  Constantino Tsallis,et al.  Central limit behavior of deterministic dynamical systems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[298]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[299]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[300]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[301]  P. Stránský,et al.  Quantum chaos in the nuclear collective model: Classical-quantum correspondence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[302]  G. M. Chechin,et al.  Peculiarities of the low-symmetry phase structure near the phase-transition point , 1993 .

[303]  M. Ivanchenko,et al.  q-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[304]  Charalampos Skokos,et al.  The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.

[305]  Michel Peyrard,et al.  The design of a thermal rectifier , 2006, cond-mat/0608569.

[306]  Timoteo Carletti,et al.  Efficient Control of Accelerator Maps , 2011, Int. J. Bifurc. Chaos.

[307]  D. Ruelle Large volume limit of the distribution of characteristic exponents in turbulence , 1982 .

[308]  A. Pikovsky,et al.  Dynamical thermalization of disordered nonlinear lattices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[309]  F. Vivaldi,et al.  One-dimensional classical many-body system having a normal thermal conductivity , 1984 .

[310]  M. Kruskal,et al.  Nonexistence of small-amplitude breather solutions in phi4 theory. , 1987, Physical review letters.

[311]  A. Pikovsky,et al.  Scaling of energy spreading in strongly nonlinear disordered lattices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[312]  R. Dvorak,et al.  Stability of motion in the Sitnikov 3-body problem , 2007 .

[313]  Roberto Morandotti,et al.  Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. , 2007, Physical review letters.

[314]  Baowen Li,et al.  Thermal Transistor: Heat Flux Switching and Modulating , 2008, 0803.2942.

[315]  G. Benettin,et al.  Time-Scales to Equipartition in the Fermi–Pasta–Ulam Problem: Finite-Size Effects and Thermodynamic Limit , 2011 .

[316]  Serge Aubry,et al.  Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit , 1996 .

[317]  Quasi-stationary states in low-dimensional Hamiltonian systems , 2003, cond-mat/0302559.

[318]  G. M. Chechin,et al.  COMPUTERS AND GROUP-THEORETICAL METHODS FOR STUDYING STRUCTURAL PHASE TRANSITIONS , 1989 .

[319]  Tassos Bountis,et al.  Existence and stability of localized oscillations in 1-dimensional lattices with soft-spring and hard-spring potentials , 2004 .

[320]  Y. Sinai,et al.  SOME SMOOTH ERGODIC SYSTEMS , 1967 .

[321]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[322]  John H. Hubbard,et al.  Student solution manual for the second edition of Vector calculus, linear algebra, and differential forms, a unified approach , 1998 .

[323]  G. M. Chechin,et al.  Bushes of vibrational modes for Fermi–Pasta–Ulam chains , 2002, nlin/0201050.

[324]  Baowen Li,et al.  Anomalous heat conduction and anomalous diffusion in one-dimensional systems. , 2003, Physical review letters.

[325]  J Romai,et al.  LOW-DIMENSIONAL QUASIPERIODIC MOTION IN HAMILTONIAN SYSTEMS , 2006 .