Genericity and Hölder Stability in Semi-Algebraic Variational Inequalities

The aim of this paper is twofold. We first present generic properties of semi-algebraic variational inequalities: “typical” semi-algebraic variational inequalities have finitely many solutions, around each of which they admit a unique “active manifold” and such solutions are nondegenerate. Second, based on these results, we offer Hölder stability, upper semi-continuity, and lower semi-continuity properties of the solution map of parameterized variational inequalities.

[1]  S. M. Robinson,et al.  Solution Continuity in Monotone Affine Variational Inequalities , 2007, SIAM J. Optim..

[2]  Boris S. Mordukhovich,et al.  Second-Order Analysis of Polyhedral Systems in Finite and Infinite Dimensions with Applications to Robust Stability of Variational Inequalities , 2010, SIAM J. Optim..

[3]  Dmitriy Drusvyatskiy,et al.  Generic Minimizing Behavior in Semialgebraic Optimization , 2015, SIAM J. Optim..

[4]  Diethard Klatte,et al.  Strong Lipschitz Stability of Stationary Solutions for Nonlinear Programs and Variational Inequalities , 2005, SIAM J. Optim..

[5]  R. T. Rockafellar,et al.  The Generic Nature of Optimality Conditions in Nonlinear Programming , 1979, Math. Oper. Res..

[6]  I. Ekeland Nonconvex minimization problems , 1979 .

[7]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[8]  Boris S. Mordukhovich,et al.  New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors , 2015, Math. Program..

[9]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[10]  Diethard Klatte,et al.  Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..

[11]  Huy-Vui Hà,et al.  Genericity in Polynomial Optimization , 2016 .

[12]  Nguyen Dong Yen,et al.  Continuity of the Solution Map in Parametric Affine Variational Inequalities , 2007 .

[13]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[14]  Boris S. Mordukhovich,et al.  Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates , 2015, Math. Program..

[15]  Nguyen Dong Yen,et al.  Quadratic Programming and Affine Variational Inequalities: A Qualitative Study , 2005 .

[16]  J. Bolte,et al.  Qualification Conditions in Semi-algebraic Programming , 2017, 1705.08219.

[17]  Stephen M. Robinson The Compression Property for Affine Variational Inequalities , 2014 .

[18]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[19]  Alexander Shapiro,et al.  Sensitivity Analysis of Parameterized Variational Inequalities , 2005, Math. Oper. Res..

[20]  Boris S. Mordukhovich,et al.  Lipschitzian stability of parametric variational inequalities over generalized polyhedra in Banach s , 2011 .

[21]  S. M. Robinson Generalized equations and their solutions, Part I: Basic theory , 1979 .

[22]  Helmut Gfrerer,et al.  Lipschitz and Hölder stability of optimization problems and generalized equations , 2016, Math. Program..

[23]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[24]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[25]  Gue Myung Lee,et al.  Stability and Genericity for Semi-algebraic Compact Programs , 2016, J. Optim. Theory Appl..

[26]  Văn Doạt Dang,et al.  Well-Posedness in Unconstrained Polynomial Optimization Problems , 2016, SIAM J. Optim..

[27]  BORIS S. MORDUKHOVICH,et al.  Coderivative Analysis of Quasi-variational Inequalities with Applications to Stability and Optimization , 2007, SIAM J. Optim..

[28]  Adrian S. Lewis,et al.  Generic Optimality Conditions for Semialgebraic Convex Programs , 2011, Math. Oper. Res..

[29]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[30]  Gue Myung Lee,et al.  Generic Properties for Semialgebraic Programs , 2017, SIAM J. Optim..