Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.

The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant.

[1]  F. Glorius,et al.  A Family of Thiazolium Salt Derived N‐Heterocyclic Carbenes (NHCs) for Organocatalysis: Synthesis, Investigation and Application in Cross‐Benzoin Condensation , 2011 .

[2]  Michael Müller,et al.  Asymmetric synthesis of aliphatic 2-hydroxy ketones by enzymatic carboligation of aldehydes , 2007 .

[3]  G. Schneider,et al.  Rational Protein Design of ThDP‐Dependent Enzymes—Engineering Stereoselectivity , 2008, Chembiochem : a European journal of chemical biology.

[4]  H. Stetter,et al.  Über die präparative Nutzung der 1,3-Thiazoliumsalz-katalysierten Acyloin- und Benzoin-Bildung; III1. Eine neue Methode zur Herstellung von substituierten Enol-trimethylsilyl-ethern des 1,2-Cyclopentandions , 1980 .

[5]  R. Wilcocks,et al.  Factors affecting 2‐hydroxypropiophenone formation by benzoylformate decarboxylase from Pseudomonas putida , 1992, Biotechnology and bioengineering.

[6]  Michael Müller,et al.  Enantioselective Synthesis of (S)‐2‐Hydroxypropanone Derivatives by Benzoylformate Decarboxylase Catalyzed C−C Bond Formation , 2000 .

[7]  F. Molinari,et al.  Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones. , 2010, Accounts of chemical research.

[8]  Sun Min Kim,et al.  Switching regioselectivity in crossed acyloin condensations between aromatic aldehydes and acetaldehyde by altering N-heterocyclic carbene catalysts. , 2011, Organic letters.

[9]  Michael Müller,et al.  Conversion of pyruvate decarboxylase into an enantioselective carboligase with biosynthetic potential. , 2011, Journal of the American Chemical Society.

[10]  Michael Müller,et al.  Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate‐dependent enzymes for asymmetric chemoenzymatic synthesis , 2009, The FEBS journal.

[11]  Michael Müller,et al.  Benzaldehyde lyase-catalyzed enantioselective carboligation of aromatic aldehydes with mono- and dimethoxy acetaldehyde. , 2003, Organic letters.

[12]  J. Pleiss,et al.  Engineering stereoselectivity of ThDP‐dependent enzymes , 2013, The FEBS journal.

[13]  Jessada Mahatthananchai,et al.  Katalytische selektive Synthese , 2012 .

[14]  Martina Pohl,et al.  Reaction engineering of benzaldehyde lyase from Pseudomonas fluorescens catalyzing enantioselective C-C bond formation , 2006 .

[15]  K. Tittmann,et al.  Thiamin diphosphate catalysis: enzymic and nonenzymic covalent intermediates. , 2008, Chemical reviews.

[16]  K. Zeitler,et al.  Highly chemoselective direct crossed aliphatic-aromatic acyloin condensations with triazolium-derived carbene catalysts. , 2011, The Journal of organic chemistry.

[17]  D. Enders,et al.  Lessons from nature: biomimetic organocatalytic carbon-carbon bond formations. , 2008, The Journal of organic chemistry.

[18]  J. Pleiss,et al.  A standard numbering scheme for thiamine diphosphate-dependent decarboxylases , 2012, BMC Biochemistry.

[19]  S. Langdon,et al.  Chemoselective N-heterocyclic carbene-catalyzed cross-benzoin reactions: importance of the fused ring in triazolium salts. , 2014, Journal of the American Chemical Society.

[20]  D. Enders,et al.  Organocatalysis by N-heterocyclic carbenes. , 2007, Chemical reviews.

[21]  P. Siegert,et al.  Benzoylformate decarboxylase from Pseudomonas putida as stable catalyst for the synthesis of chiral 2-hydroxy ketones. , 2000, Chemistry.

[22]  Michael Müller,et al.  Alteration of the Substrate Specificity of Benzoylformate Decarboxylase from Pseudomonas putida by Directed Evolution , 2003, Chembiochem : a European journal of chemical biology.

[23]  M. Pohl,et al.  Acyloin and Benzoin Condensations , 2012 .

[24]  A. Demir,et al.  Benzaldehyde lyase catalyzed enantioselective self and cross condensation reactions of acetaldehyde derivatives. , 2011, Organic & biomolecular chemistry.

[25]  Michael Müller,et al.  Enantioselective synthesis of hydroxy ketones through cleavage and formation of acyloin linkage. Enzymatic kinetic resolution via C-C bond cleavage , 2001 .

[26]  Michael Müller,et al.  Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot , 2015, Chembiochem : a European journal of chemical biology.

[27]  Michael Müller,et al.  Enzymatic Chemoselective Aldehyde-Ketone Cross-Couplings through the Polarity Reversal of Methylacetoin. , 2015, Angewandte Chemie.

[28]  G. L. Kenyon,et al.  Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. , 2005, Protein engineering, design & selection : PEDS.

[29]  Michael Müller,et al.  Branched‐Chain Keto Acid Decarboxylase from Lactococcus lactis (KdcA), a Valuable Thiamine Diphosphate‐Dependent Enzyme for Asymmetric C ? C Bond Formation , 2007 .

[30]  Jürgen Pleiss,et al.  The Thiamine diphosphate dependent Enzyme Engineering Database: A tool for the systematic analysis of sequence and structure relations , 2009, BMC Biochemistry.

[31]  T. Rovis,et al.  Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. , 2015, Chemical reviews.

[32]  M. Richter,et al.  Enantioselective intermolecular aldehyde-ketone cross-coupling through an enzymatic carboligation reaction. , 2010, Angewandte Chemie.

[33]  G. Schneider,et al.  S‐Selective Mixed Carboligation by Structure‐Based Design of the Pyruvate Decarboxylase from Acetobacter pasteurianus , 2011 .

[34]  Kurt Faber,et al.  Enantiokomplementäre Enzyme: Klassifizierung, molekulare Grundlage der Enantiopräferenz und Prognosen für spiegelbildliche Biotransformationen , 2008 .

[35]  J. Pleiss,et al.  A tailor-made chimeric thiamine diphosphate dependent enzyme for the direct asymmetric synthesis of (S)-benzoins. , 2014, Angewandte Chemie.

[36]  J. Pleiss,et al.  Tailoring the S‐Selectivity of 2‐Succinyl‐5‐enolpyruvyl‐6‐hydroxy‐3‐cyclohexene‐1‐carboxylate Synthase (MenD) from Escherichia coli , 2013 .

[37]  G. L. Kenyon,et al.  Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. , 2006, Bioorganic chemistry.

[38]  Jonathan A. Groeper,et al.  A scalable and expedient method of preparing diastereomerically and enantiomerically enriched pseudonorephedrine from norephedrine , 2006 .

[39]  Helen Brosi,et al.  Comparative characterisation of thiamin diphosphate-dependent decarboxylases , 2009 .

[40]  A. Medici,et al.  Bacillus stearothermophilus acetylacetoin synthase: A new catalyst for C–C bond formation , 2010 .

[41]  Sun Min Kim,et al.  Chemoselective and repetitive intermolecular cross-acyloin condensation reactions between a variety of aromatic and aliphatic aldehydes using a robust N-heterocyclic carbene catalyst. , 2014, Organic & biomolecular chemistry.

[42]  Michael Müller,et al.  Enantioselective Synthesis of α‐Hydroxy Ketones via Benzaldehyde Lyase‐Catalyzed C−C Bond Formation Reaction , 2002 .

[43]  G. Smit,et al.  Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation , 2005, Applied and Environmental Microbiology.

[44]  J. Pleiss,et al.  MenD from Bacillus subtilis: A Potent Catalyst for the Enantiocomplementary Asymmetric Synthesis of Functionalized α‐Hydroxy Ketones , 2014 .

[45]  Michael Mueller,et al.  Structure and mechanism of the ThDP‐dependent benzaldehyde lyase from Pseudomonas fluorescens , 2005, The FEBS journal.

[46]  M. Müller,et al.  Stereoselective formation of Bis(alpha-hydroxy ketones) via enzymatic carboligation. , 2000, The Journal of organic chemistry.

[47]  J. Bode,et al.  Catalytic selective synthesis. , 2012, Angewandte Chemie.

[48]  Martina Pohl,et al.  Characterization of benzaldehyde lyase from Pseudomonas fluorescens: A versatile enzyme for asymmetric C-C bond formation. , 2006, Bioorganic chemistry.

[49]  M. Müller,et al.  Ein maßgeschneidertes chimäres Thiamindiphosphat‐abhängiges Enzym zur direkten asymmetrischen Synthese von (S)‐Benzoinen , 2014 .

[50]  Michael Müller,et al.  Asymmetric benzoin reaction catalyzed by benzoylformate decarboxylase , 1999 .

[51]  R. Wilcocks,et al.  Acyloin formation by benzoylformate decarboxylase from Pseudomonas putida , 1992, Applied and environmental microbiology.

[52]  Kurt Faber,et al.  Enantiocomplementary enzymes: classification, molecular basis for their enantiopreference, and prospects for mirror-image biotransformations. , 2008, Angewandte Chemie.

[53]  Martina Pohl,et al.  Development of a donor-acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. , 2002, Journal of the American Chemical Society.

[54]  W. Wiechert,et al.  Effective Production of (S)-α-Hydroxy ketones: An Reaction Engineering Approach , 2014, Topics in Catalysis.

[55]  G. Petsko,et al.  The crystal structure of benzoylformate decarboxylase at 1.6 A resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. , 1998, Biochemistry.