The Ubiquitin Ligase HectH9 Regulates Transcriptional Activation by Myc and Is Essential for Tumor Cell Proliferation

[1]  M. Eilers,et al.  Transcriptional regulation and transformation by Myc proteins , 2005, Nature Reviews Molecular Cell Biology.

[2]  Jun Qin,et al.  ARF-BP1/Mule Is a Critical Mediator of the ARF Tumor Suppressor , 2005, Cell.

[3]  A. Wynshaw-Boris,et al.  Mnt–Max to Myc–Max complex switching regulates cell cycle entry , 2005, The Journal of cell biology.

[4]  A. Gartel,et al.  Myc-ARF (Alternate Reading Frame) Interaction Inhibits the Functions of Myc* , 2004, Journal of Biological Chemistry.

[5]  J. Yates,et al.  Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain , 2004, Nature Cell Biology.

[6]  K. Nakayama,et al.  Phosphorylation‐dependent degradation of c‐Myc is mediated by the F‐box protein Fbw7 , 2004, The EMBO journal.

[7]  B. Clurman,et al.  The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Joseph R. Nevins,et al.  A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells , 2004, Nature Cell Biology.

[9]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[10]  A. Ciechanover,et al.  HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Jeang,et al.  A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter , 2003, Nature Cell Biology.

[12]  D. Livingston,et al.  MYC recruits the TIP60 histone acetyltransferase complex to chromatin , 2003, EMBO reports.

[13]  F. Frischknecht The history of biological warfare , 2003 .

[14]  K. Nakayama,et al.  The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. , 2003, Molecular cell.

[15]  S. Kim,et al.  Skp2 regulates Myc protein stability and activity. , 2003, Molecular cell.

[16]  B. Lüscher,et al.  Stimulation of c‐MYC transcriptional activity and acetylation by recruitment of the cofactor CBP , 2003, EMBO reports.

[17]  M. Eilers,et al.  Negative regulation of the mammalian UV response by Myc through association with Miz-1. , 2002, Molecular cell.

[18]  R. Bernards,et al.  Stable suppression of tumorigenicity by virus-mediated RNA interference. , 2002, Cancer cell.

[19]  Kenneth Chu,et al.  Sustained Loss of a Neoplastic Phenotype by Brief Inactivation of MYC , 2002, Science.

[20]  M. Tyers,et al.  Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. , 2002, Molecular cell.

[21]  D. Boger,et al.  Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Kodadek,et al.  The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. , 2001, Molecular cell.

[23]  U. Weidle,et al.  The transcriptional program of a human B cell line in response to Myc. , 2001, Nucleic acids research.

[24]  S. Reed,et al.  Regulation of Transcription by Ubiquitination without Proteolysis Cdc34/SCFMet30-Mediated Inactivation of the Transcription Factor Met4 , 2000, Cell.

[25]  M. Cole,et al.  An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. , 2000, Molecular cell.

[26]  S. Salghetti,et al.  Destruction of Myc by ubiquitin‐mediated proteolysis: cancer‐associated and transforming mutations stabilize Myc , 1999, The EMBO journal.

[27]  J. Kononen,et al.  Tissue microarrays for high-throughput molecular profiling of tumor specimens , 1998, Nature Medicine.

[28]  M. Scheffner,et al.  A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Treisman,et al.  The POZ domain: a conserved protein-protein interaction motif. , 1994, Genes & development.

[30]  R. Dubner,et al.  Cloning of a DNA binding protein that is a tyrosine kinase substrate and recognizes an upstream initiator-like sequence in the promoter of the preprodynorphin gene. , 1994, Brain research. Molecular brain research.

[31]  G. Borsani,et al.  Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting , 1993, Nature Genetics.

[32]  H. Land,et al.  Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. , 1990, Nucleic acids research.

[33]  R. Eisenman,et al.  Deconstructing myc. , 2001, Genes & development.