TFIIH: a key component in multiple DNA transactions.

[1]  G. Farber Laue crystallography: Lights! Camera! Action! , 1997, Current Biology.

[2]  F. Holstege,et al.  Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. , 1996, The EMBO journal.

[3]  E. Nigg,et al.  In vitro assembly of a functional human CDK7‐cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. , 1995, The EMBO journal.

[4]  R. Weinberg,et al.  Requirement for TFIIH kinase activity in transcription by RNA polymerase II , 1995, Nature.

[5]  U. Schibler,et al.  A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation , 1995, Cell.

[6]  D. Morgan,et al.  Alternative mechanisms of CAK assembly require an assembly factor or an Activating Kinase , 1995, Cell.

[7]  Vasily M. Studitsky,et al.  Overcoming a nucleosomal barrier to transcription , 1995, Cell.

[8]  A. Lehmann Nucleotide excision repair and the link with transcription. , 1995, Trends in biochemical sciences.

[9]  J. Labbé,et al.  MAT1 (‘menage à trois’) a new RING finger protein subunit stabilizing cyclin H‐cdk7 complexes in starfish and Xenopus CAK. , 1995, The EMBO journal.

[10]  V. Korolev,et al.  UVS112—A gene involved in excision repair of yeast , 1995, Yeast.

[11]  E. Friedberg,et al.  The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH , 1995, Cell.

[12]  A. Bailis,et al.  The essential helicase gene RAD3 suppresses short-sequence recombination in Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[13]  D. Jackson Nuclear organization: uniting replication foci, chromatin domains and chromosome structure. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[14]  G. Faye,et al.  The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD. , 1995, Journal of molecular biology.

[15]  E. Nigg,et al.  Cyclin‐dependent protein kinases: Key regulators of the eukaryotic cell cycle , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  S. Reed,et al.  KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity , 1995, Molecular and cellular biology.

[17]  Nicholas R Cozzarelli,et al.  Comparison of recombination in vitro and in E. coli cells: Measure of the effective concentr ation of DNA in vivo , 1995, Cell.

[18]  M. Hagmann,et al.  RNA polymerase II C-terminal domain required for enhancer-driven transcription , 1995, Nature.

[19]  R. Kornberg,et al.  The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription , 1995, Molecular and cellular biology.

[20]  R. Wood,et al.  Mammalian DNA nucleotide excision repair reconstituted with purified protein components , 1995, Cell.

[21]  D. Reinberg,et al.  Cdk-activating kinase complex is a component of human transcription factor TFIIH , 1995, Nature.

[22]  R. Young,et al.  Association of Cdk-activating kinase subunits with transcription factor TFIIH , 1995, Nature.

[23]  S. Buratowski,et al.  An interaction between the Tfb1 and Ssl1 subunits of yeast TFIIH correlates with DNA repair activity. , 1995, Nucleic acids research.

[24]  R. Young,et al.  A kinase–cyclin pair in the RNA polymerase II holoenzyme , 1995, Nature.

[25]  R. Young,et al.  The RNA polymerase II holoenzyme and its implications for gene regulation. , 1995, Trends in biochemical sciences.

[26]  D. S. Hsu,et al.  Reconstitution of Human DNA Repair Excision Nuclease in a Highly Defined System (*) , 1995, The Journal of Biological Chemistry.

[27]  P. Clarke,et al.  Cyclin-Dependent Kinases: CAK-handed kinase activation , 1995, Current Biology.

[28]  D. Bushnell,et al.  Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome , 1995, Cell.

[29]  D. Reinberg,et al.  News on initiation and elongation of transcription by RNA polymerase II. , 1995, Current opinion in cell biology.

[30]  D. Reinberg,et al.  Common themes in assembly and function of eukaryotic transcription complexes. , 1995, Annual review of biochemistry.

[31]  J. Hoeijmakers,et al.  Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. , 1995, American journal of human genetics.

[32]  M. Evans,et al.  p53 modulation of TFIIH–associated nucleotide excision repair activity , 1995, Nature Genetics.

[33]  P. Hanawalt Transcription-coupled repair and human disease. , 1994, Science.

[34]  R. Kornberg,et al.  Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK , 1994, Cell.

[35]  J. Hoeijmakers,et al.  The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor , 1994, Cell.

[36]  E. Friedberg,et al.  Structural and mutational analysis of the xeroderma pigmentosum group D (XPD) gene. , 1994, Human molecular genetics.

[37]  A. Bardwell,et al.  Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. , 1994, Science.

[38]  S. West,et al.  XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair , 1994, Nature.

[39]  P. Hanawalt,et al.  Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  F. Beemer,et al.  Intermittent hair loss in a child with PIBI(D)S syndrome and trichothiodystrophy with defective DNA repair-xeroderma pigmentosum group D. , 1994, American journal of medical genetics.

[41]  A. Bardwell,et al.  Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH) , 1994, Molecular and cellular biology.

[42]  H. Steingrimsdottir,et al.  Mutations in the xeroderma pigmentosum group D DNA repair/transcription gene in patients with trichothiodystrophy , 1994, Nature Genetics.

[43]  Yang Li,et al.  A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II , 1994, Cell.

[44]  J. Hoeijmakers,et al.  The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. , 1994, The EMBO journal.

[45]  J. Hoeijmakers,et al.  p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. , 1994, The EMBO journal.

[46]  D. Reinberg,et al.  Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II , 1994, Nature.

[47]  R. Tjian,et al.  Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II , 1994, Cell.

[48]  S. Humbert,et al.  The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. , 1994, The Journal of biological chemistry.

[49]  S. Humbert,et al.  Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). , 1994, The EMBO journal.

[50]  H. Qiu,et al.  DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II , 1994, Nature.

[51]  B. Montelone,et al.  Analysis of the rad3‐101 and rad3‐102 mutations of saccharomyces cerevisiae: Implications for structure/function of rad3 protein , 1994, Yeast.

[52]  W. Vermeulen,et al.  Three unusual repair deficiencies associated with transcription factor BTF2(TFIIH): evidence for the existence of a transcription syndrome. , 1994, Cold Spring Harbor symposia on quantitative biology.

[53]  J. Hoeijmakers Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. , 1994, European journal of cancer.

[54]  A. Bardwell,et al.  Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair , 1993, Cell.

[55]  P. Sung,et al.  Human xeroderma pigmentosum group D gene encodes a DMA helicase , 1993, Nature.

[56]  David M. Chao,et al.  A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast , 1993, Cell.

[57]  R. Conaway,et al.  Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription , 1993, Nature.

[58]  P. Sharp,et al.  DNA topology and a minimal set of basal factors for transcription by RNA polymerase II , 1993, Cell.

[59]  P. Chambon,et al.  DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. , 1993, Science.

[60]  J. Hoeijmakers,et al.  Xeroderma pigmentosum complementation group G associated with Cockayne syndrome. , 1993, American journal of human genetics.

[61]  R. Conaway,et al.  General initiation factors for RNA polymerase II. , 1993, Annual review of biochemistry.

[62]  J. Hoeijmakers,et al.  ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes , 1992, Cell.

[63]  T. Donahue,et al.  SSL1, a suppressor of a HIS4 5'-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. , 1992, Genes & development.

[64]  K. D. Gulyas,et al.  SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3 , 1992, Cell.

[65]  D. Reinberg,et al.  Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein , 1992, Cell.

[66]  J. Hecht,et al.  Xeroderma pigmentosum and Cockayne syndrome: overlapping clinical and biochemical phenotypes. , 1992, American journal of human genetics.

[67]  M. Nance,et al.  Cockayne syndrome: review of 140 cases. , 1992, American journal of medical genetics.

[68]  R. Schiestl,et al.  RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination , 1990, Molecular and cellular biology.

[69]  P. Itin,et al.  Trichothiodystrophy: review of sulfur-deficient brittle hair syndromes and association with the ectodermal dysplasias. , 1990, Journal of the American Academy of Dermatology.

[70]  J. Dupuy,et al.  Xeroderma pigmentosum and Cockayne syndrome. , 1978, Pediatrics.