Face Recognition: Features Versus Templates

Two new algorithms for computer recognition of human faces, one based on the computation of a set of geometrical features, such as nose width and length, mouth position, and chin shape, and the second based on almost-gray-level template matching, are presented. The results obtained for the testing sets show about 90% correct recognition using geometrical features and perfect recognition using template matching. >

[1]  L. D. Harmon,et al.  Identification of human faces , 1971 .

[2]  Y. Kaya,et al.  A BASIC STUDY ON HUMAN FACE RECOGNITION , 1972 .

[3]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[4]  Robert J. Baron,et al.  Mechanisms of Human Facial Recognition , 1981, Int. J. Man Mach. Stud..

[5]  David J. Burr,et al.  Elastic Matching of Line Drawings , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ian Craw,et al.  Automatic extraction of face-features , 1987, Pattern Recognit. Lett..

[7]  H. Voorhees Finding Texture Boundaries in Images , 1987 .

[8]  Peter J. Burt,et al.  Smart sensing within a pyramid vision machine , 1988, Proc. IEEE.

[9]  A. Young,et al.  Handbook of Research on Face Processing , 1989 .

[10]  J. Sergent STRUCTURAL PROCESSING OF FACES , 1989 .

[11]  C. von der Malsburg,et al.  Distortion invariant object recognition by matching hierarchically labeled graphs , 1989, International 1989 Joint Conference on Neural Networks.

[12]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[13]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[14]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[16]  Tomaso A. Poggio,et al.  Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.

[17]  Terrence J. Sejnowski,et al.  SEXNET: A Neural Network Identifies Sex From Human Faces , 1990, NIPS.

[18]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[19]  Zi-Quan Hong,et al.  Algebraic feature extraction of image for recognition , 1991, Pattern Recognit..

[20]  A. Yuille Deformable Templates for Face Recognition , 1991, Journal of Cognitive Neuroscience.

[21]  Osamu Nakamura,et al.  Identification of human faces based on isodensity maps , 1991, Pattern Recognit..

[22]  Roberto Brunelli,et al.  HyperBF Networks for Real Object Recognition , 1991, IJCAI.

[23]  Yuchun Lee,et al.  Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks , 1991, Neural Computation.

[24]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[25]  Tomaso Poggio,et al.  A project for an intelligent system: Vision and learning , 1992 .

[26]  Brunelli Poggio,et al.  HyberBF Networks for Gender Classification , 1992 .

[27]  LUIGI STRINGA,et al.  Eyes detection for face recognition , 1993, Appl. Artif. Intell..