THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7

A large sample of spectroscopically confirmed star-forming galaxies at redshifts 1.4 ⩽ zspec ⩽ 3.7, with complementary imaging in the near- and mid-IR from the ground and from the Hubble Space Telescope and Spitzer Space Telescope, is used to infer the average star formation histories (SFHs) of typical galaxies from z ∼ 2 to 7. For a subset of 302 galaxies at 1.5 ⩽ zspec < 2.6, we perform a detailed comparison of star formation rates (SFRs) determined from spectral energy distribution (SED) modeling (SFRs[SED]) and those calculated from deep Keck UV and Spitzer/MIPS 24 μm imaging (SFRs[IR+UV]). Exponentially declining SFHs yield SFRs[SED] that are 5–10 times lower on average than SFRs[IR+UV], indicating that declining SFHs may not be accurate for typical galaxies at z ≳ 2. The SFRs of z ∼ 2–3 galaxies are directly proportional to their stellar masses (M*), with unity slope—a result that is confirmed with Spitzer/IRAC stacks of 1179 UV-faint (25.5$?>) galaxies—for M* ≳ 5 × 108 M☉ and SFRs ≳ 2 M☉ yr−1. We interpret this result in the context of several systematic biases that can affect determinations of the SFR–M* relation. The average specific SFRs at z ∼ 2–3 are remarkably similar within a factor of two to those measured at z ≳ 4, implying that the average SFH is one where SFRs increase with time. A consequence of these rising SFHs is that (1) a substantial fraction of UV-bright z ∼ 2–3 galaxies had faint sub-L* progenitors at z ≳ 4; and (2) gas masses must increase with time from z = 2 to 7, over which time the net cold gas accretion rate—as inferred from the specific SFR and the Kennicutt–Schmidt relation—is ∼2–3 times larger than the SFR. However, if we evolve to higher redshift the SFHs and masses of the halos that are expected to host L* galaxies at z ∼ 2, then we find that ≲ 10% of the baryons accreted onto typical halos at z ≳ 4 actually contribute to star formation at those epochs. These results highlight the relative inefficiency of star formation even at early cosmic times when galaxies were first assembling.

[1]  C. Steidel,et al.  THE HALO MASSES AND GALAXY ENVIRONMENTS OF HYPERLUMINOUS QSOs AT z ≃ 2.7 IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1204.3636.

[2]  L. Girardi,et al.  THE CONTRIBUTION OF TP-AGB AND RHeB STARS TO THE NEAR-IR LUMINOSITY OF LOCAL GALAXIES: IMPLICATIONS FOR STELLAR MASS MEASUREMENTS OF HIGH-REDSHIFT GALAXIES , 2012, 1202.4783.

[3]  H. Ferguson,et al.  HOW DO STAR-FORMING GALAXIES AT z > 3 ASSEMBLE THEIR MASSES? , 2011, 1111.1233.

[4]  David R. Law,et al.  AN HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. I. SURVEY DESCRIPTION AND MORPHOLOGICAL PROPERTIES OF STAR-FORMING GALAXIES , 2011, 1107.3137.

[5]  D. Weinberg,et al.  The intergalactic medium over the last 10 billion years - II. Metal-line absorption and physical conditions: Metal-line absorption and physical conditions , 2011, 1106.1444.

[6]  J. Trump,et al.  EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1 , 2011, 1107.5256.

[7]  D. Elbaz,et al.  GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z ∼ 2 , 2011, 1107.2653.

[8]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[9]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[10]  A. Dekel,et al.  On the puzzling plateau in the specific star formation rate at z= 2–7 , 2011, 1103.3011.

[11]  Chung-Pei Ma,et al.  The baryonic assembly of dark matter haloes , 2011, 1103.0001.

[12]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[13]  Xiaohui Fan,et al.  THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7 , 2010, 1009.3022.

[14]  G. Illingworth,et al.  THE SPECTRAL ENERGY DISTRIBUTION OF POST-STARBURST GALAXIES IN THE NEWFIRM MEDIUM-BAND SURVEY: A LOW CONTRIBUTION FROM TP-AGB STARS , 2010, 1008.4357.

[15]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[16]  A. Cimatti,et al.  Star formation rates and masses of z∼ 2 galaxies from multicolour photometry , 2010, 1004.4546.

[17]  D. Elbaz,et al.  A MULTI-WAVELENGTH VIEW OF THE STAR FORMATION ACTIVITY AT z ∼ 3 , 2010, 1003.5773.

[18]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[19]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[20]  C. Steidel,et al.  DUST OBSCURATION AND METALLICITY AT HIGH REDSHIFT: NEW INFERENCES FROM UV, Hα, AND 8 μm OBSERVATIONS OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1002.0837.

[21]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[22]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[23]  J. Holtzman,et al.  THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. IV. THE STAR FORMATION HISTORY OF NGC 2976 , 2009, 0911.4121.

[24]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[25]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[26]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[27]  A. Renzini A different approach to galaxy evolution , 2009, 0906.4628.

[28]  M. Pettini,et al.  The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.

[29]  P. Dokkum,et al.  A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR , 2009, 0906.2012.

[30]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[31]  D. Thompson,et al.  STAR FORMATION AND DUST OBSCURATION AT z ≈ 2: GALAXIES AT THE DAWN OF DOWNSIZING , 2009, 0905.1674.

[32]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[33]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[34]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[35]  R. Wechsler,et al.  MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS , 2008, 0808.1727.

[36]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[37]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[38]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[39]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[40]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[41]  J. Tinker,et al.  The Varied Fates of z ~ 2 Star-forming Galaxies , 2007, 0711.0001.

[42]  D. Erb Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A MODEL FOR STAR FORMATION, GAS FLOWS AND CHEMICAL EVOLUTION IN GALAXIES AT HIGH REDSHIFTS , 2022 .

[43]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[44]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[45]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[46]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[47]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[48]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[49]  A. Cimatti,et al.  Evidence for TP-AGB Stars in High-Redshift Galaxies, and Their Effect on Deriving Stellar Population Parameters , 2006, astro-ph/0604530.

[50]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[51]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[52]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[53]  H. Rix,et al.  The Space Density and Colors of Massive Galaxies at 2 < z < 3: The Predominance of Distant Red Galaxies , 2006, astro-ph/0601113.

[54]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[55]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[56]  F. Marleau,et al.  Point‐Source Extraction with MOPEX , 2004, astro-ph/0507007.

[57]  C. Steidel,et al.  X-Ray and Radio Emission from Ultraviolet-selected Star-forming Galaxies at Redshifts 1.5 ≲ z ≲ 3.0 in the GOODS-North Field , 2004, astro-ph/0401432.

[58]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[59]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[60]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[61]  S. M. Fall,et al.  The Size Evolution of High-Redshift Galaxies , 2003, astro-ph/0309058.

[62]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[63]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[64]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[65]  T. Heckman,et al.  The Starburst Nature of Lyman Break Galaxies: Testing Ultraviolet Extinction with X-Rays , 2002, astro-ph/0204047.

[66]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[67]  S. Arribas,et al.  The 2002 HST Calibration Workshop, Hubble after the installation of the ACS and the NICMOS cooling system : proceedings of a workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002 , 2002 .

[68]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[69]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[70]  M. Wolff,et al.  The DIRTY Model. II. Self-consistent Treatment of Dust Heating and Emission in a Three-dimensional Radiative Transfer Code , 2000, astro-ph/0011576.

[71]  Adolf N. Witt,et al.  The DIRTY Model. I. Monte Carlo Radiative Transfer through Dust , 2000, astro-ph/0011575.

[72]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[73]  E. Bell,et al.  The stellar populations of spiral galaxies , 1999, astro-ph/9909402.

[74]  R. Cen,et al.  Luminosity Density of Galaxies and Cosmic Star Formation Rate from Λ Cold Dark Matter Hydrodynamical Simulations , 1999, astro-ph/9902372.

[75]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[76]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[77]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[78]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[79]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[80]  H. Yee,et al.  Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies , 1997, astro-ph/9712216.

[81]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[82]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[83]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[84]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. II - Correlation and regression , 1986 .

[85]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[86]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[87]  M. Schmidt The Rate of Star Formation , 1959 .

[88]  E. Salpeter The Luminosity function and stellar evolution , 1955 .