Computation of 3-D Current Driven Skin Effect Problems Using a Current Vector Potential

A finite element formulation of current-driven eddy current problems in terms of a current vector potential and a magnetic scalar potential is developed. Since the traditional T- Omega method enforces zero net current in conductors, an impressed current vector potential T/sub 0/ is introduced in both conducting and nonconducting regions, describing an arbitrary current distribution with the prescribed net current in each conductor. The function T/sub 0/ is represented by edge elements, while nodal elements are used to approximate the current vector potential and the magnetic scalar potential. The tangential component of T is set to zero on the conductor-nonconductor interfaces. The method is validated by computing the solution to an axisymmetric problem. Problems involving a coil with several turns wound around an iron core are solved. >