Mathematics of Sparsity and Entropy: Axioms, Core Functions and Sparse Recovery

Sparsity and entropy are pillar notions of modern theories in signal processing and information theory. However, there is no clear consensus among scientists on the characterization of these notions. Previous efforts have contributed to understand individually sparsity or entropy from specific research interests. This paper proposes a mathematical formalism, a joint axiomatic characterization, which contributes to comprehend (the beauty of) sparsity and entropy. The paper gathers and introduces inherent and first principles criteria as axioms and attributes that jointly characterize sparsity and entropy. The proposed set of axioms is constructive and allows to derive simple or core functions and further generalizations. Core sparsity generalizes the Hoyer measure, Gini index and pq-means. Core entropy generalizes the R´ enyi entropy and Tsallis entropy, both of which generalize Shannon entropy. Finally, core functions are successfully applied to compressed sensing and to minimum entropy given sample moments. More importantly, the (simplest) core sparsity adds theoretical support to the ‘1-minimization approach in compressed sensing.

[1]  Ashutosh Sabharwal,et al.  An Axiomatic Theory of Fairness , 2009, ArXiv.

[2]  Domingo Morales,et al.  A summary on entropy statistics , 1995, Kybernetika.

[3]  Patrick Cheridito,et al.  Reward-Risk Ratios , 2013 .

[4]  Arie Yeredor,et al.  On the use of sparsity for recovering discrete probability distributions from their moments , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[5]  Jaume Suñer,et al.  On dispersion measures , 2001 .

[6]  I. Mora-Jiménez,et al.  Sparsity-Based Criteria for Entropy Measures , 2013, ISWCS.

[7]  Thomas Blumensath,et al.  Compressed Sensing With Nonlinear Observations and Related Nonlinear Optimization Problems , 2012, IEEE Transactions on Information Theory.

[8]  James C. Bezdek,et al.  Measuring fuzzy uncertainty , 1994, IEEE Trans. Fuzzy Syst..

[9]  Lin Yuan,et al.  Minimum entropy and information measure , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[10]  Hiroki Suyari Generalization of Shannon-Khinchin axioms to nonextensive systems and the uniqueness theorem for the nonextensive entropy , 2004, IEEE Transactions on Information Theory.

[11]  Imre Csiszár,et al.  Axiomatic Characterizations of Information Measures , 2008, Entropy.

[12]  Z. Daróczy,et al.  Charakterisierung der Entropien positiver Ordnung und der shannonschen Entropie , 1963 .

[13]  Scott T. Rickard,et al.  Comparing Measures of Sparsity , 2008, IEEE Transactions on Information Theory.

[14]  J. Neyman Contributions to the theory of statistics , 1956 .

[15]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[16]  E. Candès Mathematics of Sparsity (and a Few Other Things) , 2014 .

[17]  Karl Pearson “DAS FEHLERGESETZ UND SEINE VERALLGEMEINER-UNGEN DURCH FECHNER UND PEARSON.” A REJOINDER , 1905 .

[18]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[19]  Gaspar Mayor Forteza,et al.  On dispersion measures , 2001 .

[20]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[21]  Nader Ebrahimi,et al.  Ordering univariate distributions by entropy and variance , 1999 .

[22]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[23]  Venkat Chandrasekaran,et al.  Recovery of Sparse Probability Measures via Convex Programming , 2012, NIPS.

[24]  W. E. Silver,et al.  Economics and Information Theory , 1967 .

[25]  A. Annamalai,et al.  Sparseness Measures of Signals for Compressive Sampling , 2007, 2007 IEEE International Symposium on Signal Processing and Information Technology.

[26]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[27]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[28]  Ashraf A. Kassim,et al.  Gini Index as Sparsity Measure for Signal Reconstruction from Compressive Samples , 2011, IEEE Journal of Selected Topics in Signal Processing.

[29]  F. Bourguignon On the Measurement of Inequality , 2003 .

[30]  Martin Vetterli,et al.  Distributed compressed sensing: Sparsity models and reconstruction algorithms using annihilating filter , 2008, ICASSP 2008.

[31]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[33]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[34]  John G. van Bosse,et al.  Wiley Series in Telecommunications and Signal Processing , 2006 .

[35]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[36]  Yehoshua Y. Zeevi,et al.  Sparse ICA for blind separation of transmitted and reflected images , 2005, Int. J. Imaging Syst. Technol..

[37]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[38]  H. Dalton The Measurement of the Inequality of Incomes , 1920 .

[39]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[40]  Josef Haberl,et al.  On global minima of semistrictly quasiconcave functions , 2009, Optim. Lett..

[41]  Ashutosh Sabharwal,et al.  An Axiomatic Theory of Fairness in Network Resource Allocation , 2009, 2010 Proceedings IEEE INFOCOM.

[42]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[43]  Miles E. Lopes Estimating Unknown Sparsity in Compressed Sensing , 2013 .

[44]  A. Cambini,et al.  Generalized Convexity and Optimization , 2009 .