In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2.

In this Letter, we report the first in situ transmission electron microscopy observation of electrochemical oxidation of Li2O2, providing insights into the rate limiting processes that govern charge in Li-O2 cells. In these studies, oxidation of electrochemically formed Li2O2 particles, supported on multiwall carbon nanotutubes (MWCNTs), was found to occur preferentially at the MWCNT/Li2O2 interface, suggesting that electron transport in Li2O2 ultimately limits the oxidation kinetics at high rates or overpotentials.

[1]  J. Tour,et al.  In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons , 2012 .

[2]  Yang Shao-Horn,et al.  Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth. , 2013, The journal of physical chemistry letters.

[3]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[4]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[5]  C. Thompson,et al.  Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. , 2008, Nano letters.

[6]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[7]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[8]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[9]  Anastasios John Hart,et al.  Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. , 2006, The journal of physical chemistry. B.

[10]  J. Nørskov,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.

[11]  Xin-bo Zhang,et al.  Graphene Oxide Gel‐Derived, Free‐Standing, Hierarchically Porous Carbon for High‐Capacity and High‐Rate Rechargeable Li‐O2 Batteries , 2012 .

[12]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[13]  Shyue Ping Ong,et al.  Low hole polaron migration barrier in lithium peroxide , 2012 .

[14]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[15]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[16]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[17]  M. Moreno,et al.  Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. , 2011, ACS nano.

[18]  Di Chen,et al.  In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid , 2011 .

[19]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[20]  Yang Shao-Horn,et al.  Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[21]  Yang Liu,et al.  In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. , 2011, Nano letters.

[22]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[23]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[24]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[25]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[26]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[27]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[28]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[29]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[30]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[31]  L. G. Cota,et al.  On the structure of lithium peroxide, Li2O2. , 2005, Acta crystallographica. Section B, Structural science.

[32]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[33]  Jonathon R. Harding,et al.  In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions , 2012, Scientific Reports.

[34]  Xiaofeng Qian,et al.  Lithiation-induced embrittlement of multiwalled carbon nanotubes. , 2011, ACS nano.

[35]  L. Nazar,et al.  The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries , 2012 .

[36]  Ziyu Wu,et al.  First principles study on the diffusion of alkali-metal ions on the armchair single-wall nanotubes. , 2009, The journal of physical chemistry. A.

[37]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[38]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[39]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[40]  Jian Yu Huang,et al.  Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry. , 2011, Physical review letters.

[41]  M. W. Chase NIST–JANAF Thermochemical Tables for the Bromine Oxides , 1996 .

[42]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[43]  Ji‐Guang Zhang,et al.  In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO₂ nanowire during lithium intercalation. , 2011, Nano letters.

[44]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[45]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.