The Gaia-ESO Survey: the origin and evolution of s-process elements

Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements – two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce – using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the average composition of clusters with ages >0.1 Gyr. We derived statistical ages and distances of field stars, and we separated them into thin and thick disc populations. We studied the time-evolution and dependence on metallicity of abundance ratios using open clusters and field stars whose parameters and abundances were derived in a homogeneous way. Results. Using our large and homogeneous sample of open clusters, thin and thick disc stars, spanning an age range larger than 10 Gyr, we confirm an increase towards young ages of s-process abundances in the solar neighbourhood. These trends are well defined for open clusters and stars located nearby the solar position and they may be explained by a late enrichment due to significant contribution to the production of these elements from long-living low-mass stars. At the same time, we find a strong dependence of the s-process abundance ratios on the Galactocentric distance and on the metallicity of the clusters and field stars. Conclusions. Our results, derived from the largest and most homogeneous sample of s-process abundances in the literature, confirm the growth with decreasing stellar ages of the s-process abundances in both field and open cluster stars. At the same time, taking advantage of the abundances of open clusters located in a wide Galactocentric range, these results offer a new perspective on the dependence of the s-process evolution on the metallicity and star formation history, pointing to different behaviours at various Galactocentric distances.

[1]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: evidence of atomic diffusion in M67? , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy & Astrophysics.

[3]  J. Bean,et al.  The temporal evolution of neutron-capture elements in the Galactic discs , 2017, 1711.03643.

[4]  Chris L. Fryer,et al.  The Origin of r-process Elements in the Milky Way , 2017, 1710.05875.

[5]  F. Grundahl,et al.  High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age , 2017, 1710.03544.

[6]  D. Lambert,et al.  Solar Twins and the Barium Puzzle , 2017, 1707.07051.

[7]  M. Tsantaki,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu , 2017, 1705.04349.

[8]  C. Gonz'alez-Fern'andez,et al.  NGC 6067: a young and massive open cluster with high metallicity , 2017, 1704.01548.

[9]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[10]  M. L. Cognata,et al.  Concurrent Application of ANC and THM to assess the 13C(α, n)16O Absolute Cross Section at Astrophysical Energies and Possible Consequences for Neutron Production in Low-mass AGB Stars , 2017, 1702.01589.

[11]  F. Kappeler,et al.  GALACTIC CHEMICAL EVOLUTION: THE IMPACT OF THE 13C-POCKET STRUCTURE ON THE s-PROCESS DISTRIBUTION , 2017, 1701.01056.

[12]  Astronomy,et al.  On the metallicity dependence of the [Y/Mg]–age relation for solar-type stars , 2016, 1610.03852.

[13]  H. R. Coelho,et al.  Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II. Radii, Masses, and Ages , 2016, 1611.08776.

[14]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[15]  H. W. Zhang,et al.  SYSTEMATIC NON-LTE STUDY OF THE −2.6 ≤ [Fe/H] ≤ 0.2 F AND G DWARFS IN THE SOLAR NEIGHBORHOOD. II. ABUNDANCE PATTERNS FROM Li TO Eu , 2016, 1610.00193.

[16]  M. Asplund,et al.  The chemical compositions of solar twins in the open cluster M67 , 2016, 1608.03788.

[17]  P. Nissen,et al.  High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age , 2016, 1606.08399.

[18]  M. Asplund,et al.  Nucleosynthetic history of elements in the Galactic disk - [X/Fe]–age relations from high-precision spectroscopy , 2016, 1606.04842.

[19]  R. Hirschi,et al.  APPLICATION OF A THEORY AND SIMULATION-BASED CONVECTIVE BOUNDARY MIXING MODEL FOR AGB STAR EVOLUTION AND NUCLEOSYNTHESIS , 2016, 1605.06159.

[20]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy & Astrophysics.

[21]  Sergey E. Koposov,et al.  The Gaia-ESO Survey : the selection function of the Milky Way field stars , 2016, 1605.00515.

[22]  E. Friel,et al.  NEW NEUTRON-CAPTURE MEASUREMENTS IN 23 OPEN CLUSTERS. I. THE r-PROCESS , 2016, 1604.05735.

[23]  A. Karakas,et al.  STELLAR YIELDS FROM METAL-RICH ASYMPTOTIC GIANT BRANCH MODELS , 2016, 1604.02178.

[24]  M. C. Nucci,et al.  s-PROCESSING IN AGB STARS REVISITED. II. ENHANCED 13C PRODUCTION THROUGH MHD-INDUCED MIXING , 2015, 1512.06777.

[25]  C. Battistini,et al.  The origin and evolution of r- and s-process elements in the Milky Way stellar disk , 2015, 1511.00966.

[26]  Sergey E. Koposov,et al.  The Gaia -ESO Survey: Chemical signatures of rocky accretion in a young solar-type star , 2015, 1509.00933.

[27]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs , 2015, 1507.08066.

[28]  G. Carraro,et al.  The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters , 2015, 1505.04039.

[29]  G. Carraro,et al.  New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play? , 2014, 1411.1422.

[30]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[31]  M. Irwin,et al.  The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705 , 2014, 1407.1510.

[32]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[33]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[34]  M. Wiescher,et al.  GALACTIC CHEMICAL EVOLUTION AND SOLAR s-PROCESS ABUNDANCES: DEPENDENCE ON THE 13C-POCKET STRUCTURE , 2014, 1403.1764.

[35]  Sergey E. Koposov,et al.  Gaia-ESO Survey: Properties of the intermediate age open cluster NGC 4815 , 2014, 1403.7451.

[36]  S. Rosswog,et al.  Europium production: neutron star mergers versus core-collapse supernovae , 2013, 1311.6980.

[37]  A. Korn,et al.  Abundances and possible diffusion of elements in M 67 stars , 2013, 1310.6297.

[38]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy , 2013, 1312.3925.

[39]  T. Kawano,et al.  Systematic and correlated nuclear uncertainties in the i-process at the neutron shell closure N = 82 , 2013, 1310.4578.

[40]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[41]  J. Truran,et al.  THE C-FLAME QUENCHING BY CONVECTIVE BOUNDARY MIXING IN SUPER-AGB STARS AND THE FORMATION OF HYBRID C/O/Ne WHITE DWARFS AND SN PROGENITORS , 2013, 1305.2649.

[42]  G. Carraro,et al.  Barium and yttrium abundance in intermediate-age and old open clusters , 2013, 1305.1909.

[43]  E. Friel,et al.  ZIRCONIUM, BARIUM, LANTHANUM, AND EUROPIUM ABUNDANCES IN OPEN CLUSTERS , 2013, 1303.4283.

[44]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[45]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[46]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[47]  A. Bragaglia,et al.  The anticentre old open clusters Berkeley 27, Berkeley 34 and Berkeley 36: new additions to the BOCCE project , 2012, 1205.3684.

[48]  G. F. Porto de Mello,et al.  Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis , 2012, 1204.4433.

[49]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[50]  S. Degl'Innocenti,et al.  The Pisa Stellar Evolution Data Base for low-mass stars , 2012, 1202.4864.

[51]  S. Randich,et al.  NEWS ON THE s PROCESS FROM YOUNG OPEN CLUSTERS , 2011, 1112.5290.

[52]  V. Adibekyan,et al.  A new α-enhanced super-solar metallicity population , 2011, 1111.4936.

[53]  A. Bijaoui,et al.  A spectroscopic survey of thick disc stars outside the solar neighbourhood , 2011, 1110.5221.

[54]  S. Cristallo,et al.  DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS , 2011, 1107.2844.

[55]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[56]  Garching,et al.  Three new bricks in the wall: Berkeley 23, Berkeley 31 and King 8 , 2011, 1105.4440.

[57]  S. Randich,et al.  s-PROCESSING IN THE GALACTIC DISK. I. SUPER-SOLAR ABUNDANCES OF Y, Zr, La, AND Ce IN YOUNG OPEN CLUSTERS , 2011, 1105.2208.

[58]  K. Kratz,et al.  What are the astrophysical sites for the r-process and the production of heavy elements? , 2011 .

[59]  Arlo U. Landolt,et al.  DEEP, WIDE-FIELD CCD PHOTOMETRY FOR THE OPEN CLUSTER NGC 3532 , 2011, 1101.3268.

[60]  E. Friel,et al.  A CHEMICAL ABUNDANCE STUDY OF RED GIANTS IN OPEN CLUSTERS NGC 2204 AND NGC 2243 , 2011 .

[61]  N. Santos,et al.  SEARCHING FOR THE SIGNATURES OF TERRESTRIAL PLANETS IN SOLAR ANALOGS , 2010, 1007.0580.

[62]  C. Papovich,et al.  SPECTROSCOPIC CONFIRMATION OF A z = 2.79 MULTIPLY IMAGED LUMINOUS INFRARED GALAXY BEHIND THE BULLET CLUSTER , 2010, 1005.3817.

[63]  Roberto Gallino,et al.  THE WEAK s-PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS , 2010 .

[64]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[65]  S. Cristallo,et al.  EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES , 2009, 1109.1176.

[66]  S. Cristallo,et al.  Evolution, nucleosynthesis and yields of low mass AGB stars , 2009, 0902.0243.

[67]  Italy.,et al.  ENHANCED PRODUCTION OF BARIUM IN LOW-MASS STARS: EVIDENCE FROM OPEN CLUSTERS , 2009, 0901.2743.

[68]  Laura Magrini,et al.  The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters , 2008, 0812.0854.

[69]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[70]  P. Bonifacio,et al.  Solar twins in M67 , 2008, 0807.0092.

[71]  Caltech,et al.  Magnetic Mixing in Red Giant and Asymptotic Giant Branch Stars , 2008, 0806.3933.

[72]  G. Wasserburg,et al.  Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms? , 2007, 0708.2949.

[73]  R. Sagar,et al.  Wide-Field CCD Photometry around Nine Open Clusters , 2006, astro-ph/0607538.

[74]  G. Carraro,et al.  Photometry of seven overlooked open clusters in the first and fourth Galactic quadrants , 2006, astro-ph/0602256.

[75]  L. Pasquini,et al.  Element abundances of unevolved stars in the open cluster M 67 , 2006, astro-ph/0601239.

[76]  A. Bragaglia,et al.  The Bologna Open Cluster Chemical Evolution Project: Midterm Results from the Photometric Sample , 2005, astro-ph/0511020.

[77]  G. Carraro,et al.  A photometric study of the old open clusters Berkeley 73, Berkeley 75 and Berkeley 25 , 2005, astro-ph/0506596.

[78]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[79]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[80]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[81]  A. Moitinho,et al.  New catalogue of optically visible open clusters and candidates , 2002, astro-ph/0203351.

[82]  L. Mashonkina,et al.  Heavy element abundances in cool dwarf stars: An implication for the evolution of the Galaxy ? , 2001 .

[83]  M. Mayor,et al.  Red giants in open clusters ? IX. NGC 2324, 2818, 3960 and 6259 , 2001 .

[84]  G. Wasserburg,et al.  Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation , 1999 .

[85]  C. Raiteri,et al.  Simulations of Galactic Chemical Evolution: Ba Enrichment , 1999 .

[86]  F. Ferrini,et al.  Galactic Chemical Evolution of Heavy Elements: From Barium to Europium , 1999, astro-ph/9903451.

[87]  D. Geisler,et al.  A Photometric and Spectroscopic Study of the Southern Open Clusters Pismis 18, Pismis 19, NGC 6005, and NGC 6253 , 1998 .

[88]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[89]  A. Chieffi,et al.  Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process , 1998 .

[90]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[91]  B. Pagel,et al.  Galactic chemical evolution of primary elements in the solar neighbourhood — II. Elements affected by the s-process , 1997 .

[92]  C. Raiteri,et al.  The Weak s-Component and Nucleosynthesis in Massive Stars , 1993 .

[93]  J. Cowan,et al.  Production of C-14 and neutrons in red giants , 1977 .

[94]  P. A. Seeger,et al.  Nucleosynthesis of Heavy Elements by Neutron Capture , 1965 .

[95]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .