High-resolution RH map of horse chromosome 22 reveals a putative ancestral vertebrate chromosome.

[1]  Shreedhar Natarajan,et al.  A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. , 2004, Genome research.

[2]  Akihiro Shima,et al.  A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. , 2004, Genome research.

[3]  M. Gautier,et al.  Mapping of 195 genes in cattle and updated comparative map with man, mouse, rat and pig , 2004, Cytogenetic and Genome Research.

[4]  B. Chowdhary,et al.  Equine genomics: galloping to new frontiers , 2004, Cytogenetic and Genome Research.

[5]  Eun-Joon Lee,et al.  Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Eun-Joon Lee,et al.  A 1.4-Mb interval RH map of horse chromosome 17 provides detailed comparison with human and mouse homologues. , 2004, Genomics.

[7]  Donald C. Miller,et al.  An ordered BAC contig map of the equine major histocompatibility complex , 2003, Cytogenetic and Genome Research.

[8]  J. Ziegle,et al.  The second generation of the International Equine Gene Mapping Workshop half-sibling linkage map. , 2003, Animal genetics.

[9]  Susanna Cirera,et al.  Comparative mapping in the pig: localization of 214 expressed sequence tags , 2003, Mammalian Genome.

[10]  J. Weissenbach,et al.  Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. , 2003, Human molecular genetics.

[11]  Gérard Guérin,et al.  The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes. , 2003, Genome research.

[12]  S. O’Brien,et al.  Placental mammal diversification and the Cretaceous–Tertiary boundary , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M A Ferguson-Smith,et al.  Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. Matise,et al.  Construction of a 5000rad whole-genome radiation hybrid panel in the horse and generation of a comprehensive and comparative map for ECA11 , 2002, Mammalian Genome.

[15]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[16]  S. O’Brien,et al.  Integration of the feline radiation hybrid and linkage maps , 2001, Mammalian Genome.

[17]  S. Ewart,et al.  Polymorphism identification within 50 equine gene-specific sequence tagged sites. , 2001, Animal genetics.

[18]  Y. Yan,et al.  Zebrafish comparative genomics and the origins of vertebrate chromosomes. , 2000, Genome research.

[19]  Y. Yan,et al.  A comparative map of the zebrafish genome. , 2000, Genome research.

[20]  J. Mickelson,et al.  First comprehensive low-density horse linkage map based on two 3-generation, full-sibling, cross-bred horse reference families. , 2000, Genomics.

[21]  S. O’Brien,et al.  A radiation hybrid map of the cat genome: implications for comparative mapping. , 2000, Genome research.

[22]  L. Deaven,et al.  Construction of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization. , 2000, Genome research.

[23]  N. Parfrey,et al.  Localization of the gene for autosomal recessive congenital hereditary endothelial dystrophy (CHED2) to chromosome 20 by homozygosity mapping. , 1999, Genomics.

[24]  Thomas L. Madden,et al.  BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. , 1999, FEMS microbiology letters.

[25]  V. Stanton,et al.  Screening Large‐Insert Libraries by Hybridization , 1999 .

[26]  L. Andersson,et al.  Comparison of horse Chromosome 3 with donkey and human chromosomes by cross-species painting and heterologous FISH mapping , 1999, Mammalian Genome.

[27]  N. Parfrey,et al.  Homozygosity mapping and linkage analysis demonstrate that autosomal recessive congenital hereditary endothelial dystrophy (CHED) and autosomal dominant CHED are genetically distinct , 1999, The British journal of ophthalmology.

[28]  H. Scherthan,et al.  Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. , 1998, Genome research.

[29]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[30]  H. Scherthan,et al.  Zoo-FISH delineates conserved chromosomal segments in horse and man , 1996, Chromosome Research.

[31]  N. Dracopoli,et al.  Current protocols in human genetics , 1994 .

[32]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[33]  T. Mohandas,et al.  Assignment of the human and mouse prion protein genes to homologous chromosomes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[34]  H. Hameister,et al.  A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families , 2004, Chromosome Research.

[35]  B. Dutrillaux,et al.  Reconstruction of the ancestral karyotype of eutherian mammals , 2004, Chromosome Research.

[36]  M. Świtoński,et al.  The dog genome map and its use in mammalian comparative genomics. , 2004, Journal of applied genetics.

[37]  R. Agarwala,et al.  Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus). , 2003, The Journal of heredity.

[38]  J. Collinge Prion diseases of humans and animals: their causes and molecular basis. , 2001, Annual review of neuroscience.